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Abstract 

 

This paper is about remotely sensed phytoplankton fluorescence, its monitoring and spatio-temporal mapping. We 

examined several remote sensing variables provided by the National Aeronautics and Space Administration (NASA) by the 

GES DISC Giovanni system. These variables are Normalized Fluorescence Line Height (nFLH), Photosynthetically Active 

Radiation (PAR), chlorophyll a (chl-a), Diffuse Attenuation Coefficient at 490 nm, and Remote sensing reflectance 678 µm 

monthly data during April, 2011 to March, 2012 from the Moderate Resolution Imaging Spectro-radiometer (MODIS) 

satellite sensor data. Results highlight the use of selected variables which are useful for mapping ocean productivity and its 

spatial patterns. 
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Introduction 

 

Global ocean biology and fluctuations in climatic 

conditions may be linked with phytoplankton 

photosynthesis in the physical environment. Alterations in 

phytoplankton physiology have interactions with the 

oceanic environment and can express it at large, but 

phytoplankton function has proven extremely challenging 

to characterize globally (Li et al., 2013). The use of remote 

sensing for estimating ocean productivity is not a new 

concept. It has been effectively integrated as a very 

powerful tool for the past few decades, since the 

commencement of global ocean color observations (Lee et 

al., 2015; Krug et al., 2017). As we know that downwelling 

solar radiation is absorbed in ocean surface layers, which 

enhances the algal production and estimated as chl-a. The 

variation in ocean color in seawater is primarily determined 

by the concentration of phytoplankton in the open sea 

(Behrenfeld et al., 2006; Khan et al., 2015). 

Remote sensing makes it easier to understand 

phytoplankton fluorescence by providing physiological 

information that was previously possible only in 

laboratory and field studies. Satellite interpretations 

from visible and near-infrared bands provide ocean 

information. The algorithm-based fluorescence has 

great advantages for the assessment of phytoplankton 

chl-a (Abbott et al., 1999; Huot et al., 2005; 

Behrenfeld et al., 2009). 

The primary use of remote sensing of fluorescence 

has been for the estimation of chlorophyll concentration 

and primary production (Morrison & Goodwin, 2010). 

The emission of solar radiation from the plants in longer 

wavelengths is called fluorescence, and it can indicate the 

rate of photosynthesis (Falkowski, 1992; Freedman et al., 

2002). The intensity of fluorescence depends on how 

much light is absorbed, how efficiently it can be delivered 

to the reaction centers, and how fast the absorbed 

(excitation) energy can be passed through the 

photosynthetic system. Therefore, factors such as PAR, 

chl-a, and water clarity are extremely important (Huot et 

al., 2005; McClain, 2009). 

Fluorescence may be helpful for spatial monitoring 

of phytoplankton physiological state and its interaction 

with climate. During photosynthesis, fluorescence can 

be detected by multi-spectral sensors mounted on 

satellites (Behrenfeld and Falkowski, 1997; Grace et al., 

2007). As discussed by previous researchers (Ruimy et 

al., 1999; Hilker et al., 2008, Papageorgiou, 2007), 

during the process of photosynthesis all healthy 

vegetation re-emits some portion of light energy 

absorbed from sunlight by fluorescence. 

In this study phytoplankton dynamics are represented 

in the form of maps for which data was obtained by 

closely observing data from the bands in the red part of 

electromagnetic spectrum recorded by Moderate 

Resolution Imaging Spectro-radiometer (MODIS) data. 

The Northern Arabian Sea is selected because this area 

has extreme climatic parameters due to seasonal 

variations in environmental conditions, especially the air 

and water (Burkill et al., 1993; Thompson et al., 2007). 

This area has a unique biodiversity, including several 

common and rare species of algal blooms such as 

seasonal brown, green, and red algal flora representing 

important components of the region (Raghukumar & Anil, 

2003; Madhav & Kondalarao, 2004; Lee et al., 2000).The 

objective of this paper is to provide information about 

freely available (validated) NASA data to botanists, 

oceanographers, geographers, and allied scientists about 

evaluation of phytoplankton photosynthesis from space. 

Limited data is used in this study; larger quantities of data 

may be much better for long-term assessment of plant 

production and its dynamics. This study, however, shows 

the relationship of the variables related to chlorophyll 

fluorescence. 
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Fig. 1. MODIS data from April 2011 to March 2012- (a) Photosynthetically Available Radiation 4 km (Einstein/m sq/Day) (b) 

Chlorophyll-a Concentration 4 km (mg/m3) (c) Normalized Fluorescence Line Height (nFLH) 4 km [(10^-2) mW cm-2 µm-1 sr-1] (d) 

Diffuse Attenuation Coefficient at 490 nm 4 km [1/m]. 

 

Materials and Methods 

 

Study area: The study area is the northern Arabian Sea, 

bounded between 57 to 73 degree East longitude and 16 

to 30 degree North latitude. This region is rich in meso-

scale features where strong seasonal variations in the 

concentration of phytoplankton are observed, for which 

the strongest forcing factor is the Indian Ocean monsoon 

(Krey et al., 1973; Kleijne et al., 1989; Veldhuis et al., 

1997; Li & Ramanathan, 2002). Upwelling effects result 

in highly productive pelagic waters and high plankton 

productivity along the coasts of adjacent countries like 

Pakistan, India, Iran, and Oman, which supports the 

massive diversity of small herbivorous and other marine 

species (Piontkovski et al., 2011; Al-Hashmi et al., 2010). 

 

Remote sensing data: We scrutinize nFLH, PAR, chl-a, 

Diffuse Attenuation Coefficient at 490 nm, and remote 

sensing reflectance at 678 µm data sets from April, 2011 

to March, 2012 to provide an intra-annual assessment, 

obtained from  the NASA Goddard Earth Sciences Data 

and Information Services Center (GES DISC) online data 

analysis system Giovanni, https://giovanni.gsfc.nasa.gov/ 

giovanni/. 

 

Results and Discussion 

 

Figure 1a shows the distribution of PAR in the study 

area ranges from almost 40 to 50 Einstein/m sq/day. 

Figure 1b shows chl-a distribution the entire region, and 

is noticeably higher at shallower depth near the coastline 

of most countries. The nFLH distribution can be seen in 

figure 1c. Most of the fluorescence takes place near shore 

and within estuarine waters, due to higher chl-a 

concentrations. The K490 data is frequently used for 

water clarity. The distribution of K490 values is shown in 

figure 1d, which reveals the distribution of fluorescence 

in phytoplankton has some relationship with chl-a 

distribution and nFLH. It demonstrates that these three 

variables have similar distribution pattern, so clearly these 

variables have positively correlated distributions, as 

shown in figure 2 (a to d). 

https://giovanni.gsfc.nasa.gov/
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Fig. 2. Correlation among variables (a) chl-a 4 km (mg/ m3) and Normalized Fluorescence Line Height (nFLH) 4 km [(10^-2) mW 

cm-2 µm-1 sr-1] (b) Photosynthetically Available Radiation 4 Km (Einstein/m sq/Day) and chl-a 4 km (mg/ m3) (c) Normalized 

Fluorescence Line Height (nFLH) 4 km [(10^-2)-mW cm-2 µm-1 sr-1]  and Diffuse Attenuation Coefficient at 490 nm 4 km [1/m] (d) 

Chl-a concentration 4km (mg/ m3) and Remote sensing reflectance 678 µm (sr-1). 
 

Field-based monitoring of phytoplankton 

populations over vast areas of the ocean through ship 

surveys is not ideal and is in fact, ineffective and usually 

requires significant investment of time, human effort, 

and funding. Monitoring phytoplankton biomass, due to 

its influence on water quality and ocean productivity is 

very vital. Environmental changes influence 

phytoplankton biomass as they are recognized and 

verified as environmentally sensitive plants, which can 

be impacted with shifts in the seasonality of blooms, or 

phenology, resulting from changing temperature and 

nutrient conditions. In order to evaluate the satellite-

derived chlorophyll some studies are already discuss 

phytoplankton dynamics. Satellite-derived chlorophyll 

are closely correlated to phytoplankton. The chlorophyll 

concentration values and the overall distribution pattern 

was found to match reasonably well with many studies 

(Chaturvedi & Narain, 2003; Khan et al., 2015). The 

highest concentrations were observed at almost all 

locations during the January-February period. The 

extending of mixed layer and subsequent changes in 

visual and physicochemical properties of euphotic zone 

can influence phytoplankton community dynamics in the 

northeastern Arabian Sea during winter monsoon 

(Bemal et al., 2018). 

Remote sensing observations, therefore, have been 

integrated by researchers for the estimation of the amount 

of chlorophyll in order to monitor spatio-temporal 

variations of ocean productivity at various scales (Rascher 

& Pieruschka, 2008; Blondeau-Patissier et al., 2014). 

Now, chlorophyll fluorescence in phytoplankton biomass 

can improve global knowledge on physiology and 

photosynthetic efficiency, in both the marine and 

terrestrial realms. Moreover, for better interpretation, 

seasonal variation in the presence of phytoplankton may 

be well integrated by climate models (Antoine and Morel, 

1996, Pettorelli et al., 2005, Gower et al., 2004; 

Behrenfeld et al., 2006). 
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Conclusion 

 

The present work discusses phytoplankton growth 

and its associated factors. Marine ocean primary 

productivity can be estimated by using remotely sensed 

fluorescence. In phytoplankton during photosynthesis, 

physiological performance responds to changing physical 

condition like PAR, resulting in variation in the value of 

nFLH. Remotely sensed data also helps to define 

associations among several variables that are associated 

with ocean primary productivity. 
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