JIN XIE^{1,2,3*}, XIAOQI ZHU^{1,3}, RONG SONG^{1,3}, SIWEN PENG¹ AND YANGNING HUANG^{1,3},

¹Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, China ²Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha, 410125, Hunan, China,

³Changsha medical plant seedling Engineering Technology Research Center, Changsha, 410125, Hunan, China *Corresponding author's emails: jin8410051108@163.com

Abstract

In this paper, 12 samples of *Trichosanthes kirilowii* seed from different places of production were studied. The total proteins of the 12 samples were extracted by Tris-phenol method. Twelve samples of proteins were isolated by SDS-PAGE. SDS-PAGE results showed that the protein bands in sample No.8 are different from those of other samples. And those protein bands were identified by mass spectrometry. At least 10 differentially expressed proteins were identified, including rRNA N-glycosidase, Acetyl-CoA acyltransferase, Citrate synthase, Phosphoglycerate kinase, Isocitrate dehydrogenase, Fructose-bisphosphate aldolase, Ferritin, Urease, Hhydroxyacyl-ACP-dehydratase, Glutathione peroxidase. From the result of protein identification, it can be inferred that the seed of No. 8 sample was superior to other samples during germination.

Key words: Trichosanthes kirilowii seed, Protien, Isolation and Identification.

Introduction

Trichosanthes kirilowii seed is the Trichosanthes kirilowii (Trichosanthes rosthornii Harms) of mature seeds. Trichosanthes kirilowii seeds have been commonly used in oriental traditional medicine and in Chinese medicine for the treatment of cough, inflammation, diabetes, and obstipation. Modern pharmacological studies have shown that it has the expansion of coronary artery, increase coronary flow, protection of ischemic myocardium, anti-inflammatory, anti-tumor and diarrhea, antithrombotic and hardening of the arteries to regulate blood sugar, and so on, with strong anti-platelet aggregation function (Wagner et al., 2016).

Trichosanthes kirilowii seeds have main effective components including fat (Yan *et al.*, 2008), flavonoids (Liu *et al.*, 2013), and organic acids, sterols and terpenoids (*Cheng et al.*, 2005), protein amino acids and trace elements and minerals. So, *Trichosanthes kirilowii* seed has high nutritional value (Xiu *et al.*, 2005).

Trichosanthes kirilowii seed contains almost the entire genomes of trichosanthes kirilowii. There is no Complete Genomic Sequence of Trichosanthes kirilowii seed. For the study of the subprotein of trichodium, Casellas, P (Casellas et al., 1988) were extracted from the tricho-trichokirin, which had a strong libosomal inactivation. Falasca, a.i. (Falasca et al., 1989) extracted the lectin which was belongs to the family Cucurbitaceae from Trichosanthes kirilowii seeds. The lactin has molecular weight of 57 kD, consists of two subunits with apparent molecular masses of 37 and 25 kD. (Lee-Huang et al., 1991) extracted TAP 29: an anti-human immunodeficiency virus protein from Trichosanthes kirilowii seeds, and the molecular weight was 29kD, and it would be possible to replace the anti-virus protein in AIDS treatment. (Dong et al., 1994) also isolated a new ribosomal-inactivating protein beta-kirilowin from the seeds of Trichosanthes kirilowii. The protein showed strong abortifacient activity in pregnant mice. (Wong et al., 1996) were able to extract alpha-kirilowin from the

Trichosanthes kirilowii seeds, which was slightly larger another previously characterized ribosomethan inactivating protein, beta-kirilowin. (Ozaki et al., 1996) carried out to elucidate the anti-inflammatory effect of 50% ethanol extract obtained from the fruit of Trichosanthes kirilowii Maxm, and its effective parts. (Tai et al., 2000), etc., are extracted A new small ribosome-inactivating protein named S-trichokirin from the seeds of Trichosanthes kirilowii. (Li et al., 2003) and (Yang et al., 2005) not only extracted a new peptide trichokirin-s1 from the trichokirin, but also carried out the analysis and research on the activity of the trichokirin-s1 (Shu et al., 2009) purified a novel ribosome-inactivating protein, designated Trichosanthrip, from mature seeds of Trichosanthes kirilowii.

A lot of literatures has reported the optimization of extraction method for *Trichosanthes kirilowii* protein. Ting-xia dong has used such as the species of the genus *Trichosanthes kirilowii* identification of protein electrophoresis (Dong *et al.*, 1990). Yan-mei song compared the 6 kinds of protein extraction method for *Trichosanthes kirilowii* seeds (Song *et al.*, 2011). A great deal of work has been carried on the *Trichosanthes kirilowii* protein comparative study (Li *et al.*, 2015; Song, 2015).

Seeds were collected *Trichosanthes kirilowii* from different places of production. The proteins were compared. The study established *Trichosanthes kirilowii* protein map. The differences protein bands and the common characteristic protein bands were analysed by LC-MS. It helps to provide reliable basis for the optimization of *Trichosanthes kirilowii* breeding research.

Materials and Methods

Plant materials and sample preparation: The *Trichosanthes kirilowii* seed were harvested from different places in China. The materials were weighed, leaved the seeds to dry naturally, then stored at 25° C.

Protein extraction (Tris-phenol extraction protocol): The Trichosanthes kirilowii seed (seed-coat, 0.2 g fresh weight) were ground to powder in a pre-cooled mortar by using liquid nitrogen. The sample powder was transferred into Eppendorf tubes for protein extraction. 0.6 ml extraction buffer (500 mM Tris, 50 mM EDTA, 700 mM sucrose, and 100 mM KCl, pH 8.0) was added to Eppendorf tubes for protein extraction. The tubes were vortexed for 30 min at 4°C. Then, one volume (v/v) phenol was added (Tris buffered to pH 7.9), and the solution was vortexed for 30 min at 4°C and centrifuged at 12,000 rpm for 30min. The upper phenol layer was transferred into another tube. The lower layer was re-extracted with one volume (v/v) each of phenol and extraction buffer, vortexed, and centrifuged, and the phenol layer was combined with the volume collected earlier. Next, 3-5 volumes (v/v) of 0.1 M ammonium acetate in methanol were added, and the mixture was maintained at -20°C overnight. The tube was centrifuged at 12,000 rpm for 15 min at 4° C. The pellet was washed twice with 0.1 M ammonium acetate in methanol and twice with acetone containing 0.07% 2-mercaptoethanol (ME). In each case, the pellet was completely suspended by vortexing and centrifuged at 12,000 rpm for 15 min at 4°C. Finally, the pellet was vacuum-dried.

Protein lysis: The pellets were dissolved in a lysis buffer (containing 8 M urea, 2 M Thio urea, 4% CHAPS, 65 mMDTT, and 2% Ampholyte), vortexed for 3 h, and centrifuged at 15,000 rpm for 30 min at 25°C. The protein concentration in the supernatant was quantified in accordance with Bradford (1976), using bovine serum albumin as the standard.

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS- PAGE), 15% polyacrylamide gel (Laemmli *et al.*, 1970) was utilized. Electrophoresis was carried out at 15 mA per gel for 30 min and 25 mA per gel until the dye reached the bottom of the gel. The gels were stained using Commassie Blue Staining Solution.

In-gel digestion: The gel of protein bands were cut with a scalpel. Each gel of protein bands was cut into 0.5mm3~1mm3, and mark them on the 1.5mL EP tube. Add 50mM DTT into the tube in 1h at 56°C. And 100mM IAM were added for 40min at 25°C. The proteins were digested with trypsin. The sample was incubated at 37°C overnight. The solution was extracted from the digestion tube and transferred to a new Eppendorf tube for

Fig. 1. Protein electrophoresis of *Trichosanthes kirilowii* seed from different places of production.

collection. The sample was dried in a vacuum centrifuge and stored at -80 $^{\circ}\mathrm{C}.$

Nano-LC-TOF analysis: A nano-LC system, equipped with Eksigent nano- LC 415 System (Eksigent, USA), and 3C18-CL-120 Column (3 μ m, 120 Å, 75 μ m*150mm, Eksigent , USA), was used to separate mixed compounds. Triple TOF 5600 (Applied Biosystem, USA) was used to identify the target compounds. Data processing was performed in Analyst TF (Applied Biosystem, USA). The gradient elution used for the HPLC separation is shown in Table 1. The MS parameters were the following: MS scan range is from 350 to 1250 (m/z) for each 0.25s. MS₂ scan range is from 100 to 1500(m/z). From each scan was chosen 40 strongest parention for tandem scanning.

Table 1. Nano-LC gradient for sepatation of protein.

	0		
Time	Flow rate	0. 1 % Formic	Acetonitrile
(min)	(nL/min)	acid (%)	(%)
0	300	95	5
0.5	300	92	8
60	300	75	25
75	300	50	50
80	300	20	80
90	300	95	5

Results and Discussion

The SDS-PAGE gel of *Trichosanthes kirilowii* seed from different places of production: Representative Commassie Blus-stained gels for *Trichosanthes kirilowii* seed from different places of production are shown in Fig. 1.

From fig.1, the SDS-PAGE results showed that the protein bands in sample No.8 are different from those of other samples. At molecular weight of protein rang of 45kD to 66kD, there are two distinct bands in the sample No.8. From 20kD to 30kD, the sample No.8 has two different protein bands from other samples. And those protein bands were cut and identified by mass spectrometry. The protein bands to be detected were shown in Fig. 2.

The result of Nano-LC-TOF analysis: Five protein bands were digested with trypsin. And each bands prepared to nano-LC-TOF analysis system. The information of these protein bands were displayed in Tables 2, 3, 4, 5, 6.

Fig. 2. The position of protein bands a,b,c,d,e are the protein bands which were cut and identified by mass spectrometry.

No	Table 2. Detailed information of protein band tabbed the a. Na Table 0/ Can Accession None					
<u>INO.</u>	10tal	% COV	Accession	Name	Species	
1.	141.75	33.1	AUAUAUL4Q9		Cucumis salivus Cucurbita maxima	
2. 3	21.57	22.4		I v 100 Uncharacterized protein	Cucumis sativus	
3. 4	19 32	44.6		Uncharacterized protein	Cucumis sativus	
	14.9	41.0	008375	Acetyl-CoA acyltransferase (3-ketoacyl-coa thiolase)	Cucumis sativus	
6	12	16.2	A0A0A0KC13	Citrate synthase	Cucumis sativus	
0. 7	10.18	21.5	A0A0A0LR78	Aspartic proteinase	Cucumis sativus	
8.	9.74	18.5	S8CHM2	Phosphoglycerate kinase	Genlisea aurea	
9.	8.07	20.9	A0A199UHV7	Glutamate-glyoxylate aminotransferase 2 (Fragment)	Ananas comosus	
10.	8	18.4	A0A067JHW3	Uncharacterized protein	Jatropha curcas	
11.	7.05	19.3	A0A0A0KX30	Uncharacterized protein	Cucumis sativus	
12.	6.18	19.5	A0A059CC25	Obg-like ATPase 1	Eucalyptus grandis	
13.	6.16	29.3	A0A0A0LGI3	Fructose-bisphosphate aldolase	Cucumis sativus	
14.	6.14	19	Q84VH4	Elongation factor 1-alpha (Fragment)	Malva pusilla	
15.	30.1	81.8	F2YML9	Vicilin-like protein (Fragment)	Citrullus lanatus	
16.	6.05	21.1	B9SR98	Isocitrate dehydrogenase [NADP]	Ricinus communis	
17.	10	8.9	V4M1R7	Uncharacterized protein	Eutrema salsugineum	
18.	6	8.3	A0A0A0LAB5	Uncharacterized protein	Cucumis sativus	
19.	6	9.8	W0FVK2	Catalase (Fragment)	Cucurbita maxima	
20.	8.24	17.4	O04057	Aspartic proteinase	Cucurbita pepo	
21.	4.01	9.7	A0A0A0LSD8	Uncharacterized protein	Cucumis sativus	
22.	8.87	20.7	Q42918	Acetyl-CoA C-acyltransferase (3-ketoacyl-coa thiolase b) (Fragment)	Mangifera indica	
23.	8	9.3	A0A0Q3PKH8	Uncharacterized protein	Brachypodium distachyon	
24.	6.14	12.9	W9R450	Fructose-bisphosphate aldolase	Morus notabilis	
25. 26	4	10.1	AUAUAUK9P6	Uncharacterized protein	Cucumis sativus	
26.	4	13.8		rKINA IN-glycosidase	Trichosanthes kirilowii	
27.	4	5.9	AUAUAULCKO	Uncharacterized protein	Cucumis sativus	
20. 20	4	18.2	AUAUAUKAJo	Elongation factor 1 gamma	Cucumus sauvus Zizinhus jujuha	
29. 30	4 23	10.2	RORHV3	Phosphoglycerate kinase	Ricinus communis	
31	4.25	10.1	O9SFW4	Vicilin-like protein (Fragment)	Citrus clementina	
32	2 25	10.1	D5I MH3	Monodehydroascorbate reductase	Lilium longiflorum	
33.	2.18	24.5	A0A0A0LHY6	Formate dehydrogenase, mitochondrial	Cucumis sativus	
34.	8.21	27.3	A0A0A0LNN6	Uncharacterized protein	Cucumis sativus	
35.	2.03	8.2	V4MMH1	Aspartate aminotransferase	Eutrema salsugineum	
36.	2.03	4.3	V4UDH4	Uncharacterized protein	Citrus clementina	
37.	2.02	6.3	A0A0A0KAV8	Aminoacylase	Cucumis sativus	
38.	11.11	31.5	U5DIN0	Uncharacterized protein	Amborella trichopoda	
39.	8	12.7	I1QGE3	Uncharacterized protein	Oryza glaberrima	
40.	6.17	13.4	V4TK57	Uncharacterized protein	Citrus clementina	
41.	6.01	25	A0A0A0LNB2	Uncharacterized protein	Cucumis sativus	
42.	6	8.4	A0A0A0L7Y5	Uncharacterized protein	Cucumis sativus	
43.	4.05	18.1	B9H3K3	Isocitrate dehydrogenase [NADP]	Populus trichocarpa	
44.	4	11.9	A0A0K0MFZ6	ADH	Stipa purpurea	
45.	2.02	18.7	BOVPZ9	Formate dehydrogenase, mitochondrial	Lotus japonicus	
46.	2	15.4	MIBV50	Uncharacterized protein	Solanum tuberosum	
4/. 10	2	8 22 1	WYQZ41 V7CEP0	o-phosphogluconate denydrogenase, decarboxylating	Morus notabuls Dhasoolus yulaamis	
4ð. 40	2	22.1 10	V/CED9	Oncharacterized protein Clycaraldahyda 3 phographic dahydroganaca	1 naseonus vulgaris Madiagao transatula	
49. 50	2	57	M5XD2	Annevin	Prunus parsica	
50. 51	$\frac{2}{2}$	5.7 73	M1BNK9	Uncharacterized protein	Solanum tuberosum	
52	2	5.7	A0A0D2TX48	Uncharacterized protein	Gossypium raimondii	
53.	2	5.2	A0A0A0L2W7	Uncharacterized protein	Cucumis sativus	
54.	2	4.6	A0A0A0KYN6	Glutamate dehvdrogenase	Cucumis sativus	
55.	2	2.7	O48942	Beta-ketoacyl-ACP synthase I	Perilla frutescens	
56.	2	2.3	J7MB60	Serine hydroxylmethyltransferase	Polytomella sp. Pringsheim	
57.	2	2.4	B9MXY5	Isocitrate lyase	Populus trichocarpa	
58.	2	4.6	B9GSQ3	Uncharacterized protein	Populus trichocarpa	
59.	2	4.1	A0A0A0KT30	Uncharacterized protein	Cucumis sativus	
60.	1.02	3.1	A0A0A0KAE2	Uncharacterized protein	Cucumis sativus	
61.	0.81	2.6	D8SLC0	Putative uncharacterized protein	Selaginella moellendorffii	
62.	0.37	1.4	W1NIP0	Uncharacterized protein	Amborella trichopoda	
63.	4.59	12.7	A0A199UWG9	Isocitrate dehydrogenase [NADP]	Ananas comosus	
64.	6.87	13.2	A0A0D6QU68	Uncharacterized protein	Araucaria cunninghamii	
65.	6	21.4	M4CMT4	Uncharacterized protein	Brassica rapa subsp. pekinensis	
66.	4.08	15.4	S8D2K5	Fructose-bisphosphate aldolase	Genlisea aurea	
67.	4	6.4	A5BE40	Putative uncharacterized protein	Vitis vinifera	

Table 2. Detailed information of protein band tabbed the a.

N	No.	Total	% Cov	Accession	Name	Species
	1.	20.73	12.5	A0A0A0L4Q9	Uncharacterized protein	Cucumis sativus
	2.	6	7.7	A0A0A0KM69	Ferritin	Cucumis sativus
	3.	4.03	28.4	A0A0A0LBU6	Uncharacterized protein	Cucumis sativus
4	4.	4	5.4	A0A0A0L7Y5	Uncharacterized protein	Cucumis sativus
	5.	4	11.9	H6TB40	HSP23.5	Citrullus lanatus
(6.	4	5.1	A0A0A0KHQ1	Uncharacterized protein	Cucumis sativus
,	7.	2.21	16.3	E5F5W3	Glutathione peroxidase (Fragment)	Picea sitchensis
:	8.	2.19	11.1	A0A0A0LLE7	Serine hydroxymethyltransferase	Cucumis sativus
(9.	2.14	14.9	A0A0A0L917	Uncharacterized protein	Cucumis sativus
1	0.	2.19	6.6	Q8GZP6	Allergen Ana o 2 (Fragment)	Anacardium occidentale
1	1.	2.1	16.5	M4R4G0	Hydroxyacyl-ACP dehydratase	Camellia chekiangoleosa
1	2.	2.06	8.8	A0A176VJ02	Uncharacterized protein	Marchantia polymorpha subsp. polymorpha
1	3.	2.02	9.3	Q40115	Ribonuclease (RNase LC1)	Luffa aegyptiaca
1	4.	4	20.5	A0A067G079	Ferritin (Fragment)	Citrus sinensis
1	5.	2.12	6.1	A0A090DLH8	Edestin 1	Cannabis sativa
1	6.	2	36.4	F2YML9	Vicilin-like protein (Fragment)	Citrullus lanatus
1	7.	2	6.3	B9RGD0	Annexin	Ricinus communis
1	8.	2	4	A0A0J8CCH0	Uncharacterized protein	Beta vulgaris subsp. vulgaris
1	9.	2	5.8	A0A0A0LXR3	Uncharacterized protein	Cucumis sativus
2	25.	2	5.3	Q38JD1	Predicted protein	Physcomitrella patens subsp. patens
2	26.	0.86	5.1	A0A0A0LC37	Uncharacterized protein	Cucumis sativus

Table 3. Detailed information of protein band tabbed the b.

Table 4. Detailed information of protein band tabbed the c.

No.	Total	% Cov	Accession	Name	Species
1.	67.6	45.5	A0A0A0L7E7	Uncharacterized protein	Cucumis sativus
2.	6.01	29.6	A0A0A0LBU6	Uncharacterized protein	Cucumis sativus
3.	6.04	9.1	A0A0J8CCH0	Uncharacterized protein	Beta vulgaris subsp. vulgaris
4.	4	3.9	V4SU04	Urease	Citrus clementina
5.	3.67	22.1	E5F5X2	Glutathione peroxidase (Fragment)	Picea sitchensis
6.	8.48	24.6	A0A0A0LNN6	Uncharacterized protein	Cucumis sativus
7.	2.01	10.9	V7CLI7	Uncharacterized protein	Phaseolus vulgaris
8.	3.26	21.4	MORP81	Glutathione peroxidase	Musa acuminata subsp. malaccensis
9.	2	18.4	W9RSX6	60S ribosomal protein L11-2	Morus notabilis
10.	2	7	F4IMB5	ATPase, F1 complex, alpha subunit protein	Arabidopsis thaliana
11.	2	6.5	I0B569	Vicilin	Vicia faba
12.	2	11.2	W9RI49	40S ribosomal protein S15	Morus notabilis
13.	2	5.8	A0A0A0LTW2	Tumor-related protein	Cucumis sativus
14.	1	9.3	Q40115	Ribonuclease (RNase LC1)	Luffa aegyptiaca
15.	2.55	11.9	A0A199URK7	Glutelin type-A 1	Ananas comosus

No.	Total	% Cov	Accession	Name	Species
1.	81.48	30.5	A0A0A0L4Q9	Uncharacterized protein	Cucumis sativus
2.	76.11	37.8	Q9ZWI3	PV100	Cucurbita maxima
3.	11.09	25.2	M5XR34	Uncharacterized protein	Prunus persica
4.	9.16	26.6	Q3LUM1	Elongation factor 1-alpha	Gossypium hirsutum
5.	7.14	15.3	A0A0A0KAE2	Uncharacterized protein	Cucumis sativus
6.	6.6	11.4	A0A0A0KG56	Uncharacterized protein	Cucumis sativus
7.	6.02	12.5	O04057	Aspartic proteinase	Cucurbita pepo
8.	6	4.5	A0A067JF64	Uncharacterized protein	Jatropha curcas
9.	10.66	77.9	F2YML9	Vicilin-like protein (Fragment)	Citrullus lanatus
10.	4.03	10.6	J9PX40	Enolase	Phytolacca americana
11.	4.01	11.9	A0A0A0L818	Uncharacterized protein	Cucumis sativus
12.	4	6.1	A0A0A0LQE8	Beta-galactosidase	Cucumis sativus
13.	3.59	6.6	B9GSQ3	Uncharacterized protein	Populus trichocarpa
14.	3.18	12.1	W5I0B0	Uncharacterized protein	Triticum aestivum
15.	2.3	4.5	A0A0A0KY03	Uncharacterized protein	Cucumis sativus
16.	2.04	11.8	D7TFJ4	Putative uncharacterized protein	Vitis vinifera
17.	10.76	33.8	A0A0A0LQN5	Uncharacterized protein	Cucumis sativus
18.	4	5.8	A0A061DMF8	Aspartic proteinase A1 isoform 1	Theobroma cacao
19.	2	10.4	W9RJ43	Catalase	Morus notabilis
20.	2	4	I1MNX4	Uncharacterized protein	Glycine max
21.	1.89	2.2	W9RK76	Uncharacterized protein	Morus notabilis
22.	1.85	10.6	A0A0V0IPH7	Putative luminal-binding protein 5-like	Solanum chacoense
23.	8	22.5	A0A067JRR4	Uncharacterized protein	Jatropha curcas
24.	1.44	3.4	A0A0A0LAB5	Uncharacterized protein	Cucumis sativus
25.	1.34	15.5	R0IFZ3	DHAR class glutathione S-transferase	Capsella rubella
26.	5.88	11	V4U0A2	Uncharacterized protein	Citrus clementina
27.	2.68	8.2	V4RGK6	Uncharacterized protein	Citrus clementina
28.	0.94	7.5	V7AUN1	Uncharacterized protein	Phaseolus vulgaris

Table 5. Detailed information of protein band tabbed the d.

Table 6. Detailed information of protein band tabbed the e.

No.	Total	% Cov	Accession	Name	Species
1.	35.88	23.4	A0A0A0LNN6	Uncharacterized protein	Cucumis sativus
2.	5.82	14.1	Q9ZWI3	PV100	Cucurbita maxima
3.	5.08	6.1	A0A0J8CCH0	Uncharacterized protein	Beta vulgaris subsp. vulgaris
4.	3.6	6.9	A0A0A0L7Y5	Uncharacterized protein	Cucumis sativus
5.	2.61	6.1	Q8GZP6	Allergen Ana o 2 (Fragment)	Anacardium occidentale
6.	2.02	2.2	A0A072TII3	Uncharacterized protein	Medicago truncatula
7.	16.62	23.1	A0A0A0K9P5	Uncharacterized protein	Cucumis sativus
8.	2.01	13.3	H6TB40	HSP23.5	Citrullus lanatus
9.	2	20.3	A0A103Y8Z2	Mss4-like protein (Fragment)	Cynara cardunculus var. scolymus
10.	2	32.5	F2YML9	Vicilin-like protein (Fragment)	Citrullus lanatus
11.	2	5.8	A0A0A0LXR3	Uncharacterized protein	Cucumis sativus
12.	1.44	2.4	Q39651	PreproMP27-MP32	Cucurbita cv. Kurokawa Amakuri
13.	0.82	2	A0A0D2M6U4	Uncharacterized protein	Gossypium raimondii
14.	4.03	7	A0A199URK7	Glutelin type-A 1	Ananas comosus
15.	0.24	1.6	A0A151SD87	Retrovirus-related Pol polyprotein from transposon TNT 1-94	Cajanus cajan

Conclusions

In all, these proteins, rRNA N-glycosidase, Acetyl-CoA acyltransferase, Citrate synthase, Phosphoglycerate kinase, Isocitrate dehydrogenase, Fructose-bisphosphate aldolase, Ferritin, Urease, Hhydroxyacyl-ACP-dehydratase, Glutathione peroxidase were only indentified in the 8th sample. RRNA N-glycosylase, Citrate synthase and Isocitrate dehydrogenase are the key pace-making enzyme in the citric acid cycle. Acetyl-CoA acyltransferase is an enzyme that transformated Acetoacetyl-CoA to acetyl-CoA. Phosphoglycerate kinase is the key enzyme in the glycolytic pathway. Fructose-bisphosphate aldolase enhances the adaptation of plants to salt stress by promoting glycolysis and aerobic respiration (Theil, 2012) Hydroxyacyl ACP dehydrase is an enzyme involved in fatty acid synthesis. Glutathione peroxidase (GPx) is the general name of an enzyme family with peroxidase activity whose main biological role is to protect the organism from oxidative damage. Ferritin is a kind of iron storage protein. The role of urease is to catalyze the hydrolysis of urea to ammonia and carbon dioxide. These are important enzymes in the growth and development of plants, thus it is possible to speculate that the No. 8 sample germination and growth process is superior to other samples. And there is another possibility that No. 8 sample and other samples did not belong to the same species.

Acknowledgements

The work was jointly supported by China Agriculture Research System (CARS-21), Innovation project of Hunan Academy of Agricultural Sciences (2016QN01).

References

- Casellas, P., D. Dussossoy, A.I. Falasca, L. Barbieri, J.C. Guillemot, P. Ferrara, A. Bolognesi, P. Cenini, and F. Stirpe. 1988. Trichokirin, a ribosome-inactivating protein from the seeds of *Trichosanthes kirilowii* Maximowicz. Purification, partial characterization and use for preparation of immunotoxins. *Eur. J. Biochem.*, 176: 581-588.
- Cheng, X., T. Wu, G. Chou, Y. Hu, G. Xu, F. Zhang and Z. Wang. 2005. RP-HPLC Quantitative Analysis of 3,29-Dibenzoyl-karounitriol in *Semen Trichosanthis. Chinese J. Pharm. Anal.*, 25: 377-380.
- Dong, T.X., G.J. Xu, R.L. Jin and L.S. Xu. 1990. Electrophoretic Identification of Some Seeds of *Trichosanthe. J. China Pharm. Uni.*, 04: 249-250.
- Dong, T.X., T.B. Ng, H.W. Yeung and R.N. Wong. 1994. Isolation and characterization of a novel ribosomeinactivating protein, beta-kirilowin, from the seeds of *Trichosanthes kirilowii. Biochem. Biophys. Res. Commun.*, 199: 387-393.
- Falasca, A.I., A. Abbondanza, L. Barbieri, A. Bolognesi, C.A. Rossi and F. Stirpe. 1989. Purification and partial characterization of a lectin from the seeds of *Trichosanthes kirilowii* Maximowicz. *Febs. Lett.*, 246: 159-162.

- Laemmli, U.K., Beguin, F., and Gujer-Kellenberger, G. 1970. A factor preventing the major head protein of bacteriophage t4 from random aggregation. *Journal of Molecular Biology.*, 47(1), 69-85.
- Lee-Huang, S., P.L. Huang, H.F. Kung, B.Q. Li, P.L. Huang, P. Huang, H.I. Huang and H.C. Chen. 1991. TAP 29: an antihuman immunodeficiency virus protein from *Trichosanthes kirilowii* that is nontoxic to intact cells. *Proc. Natl. Acad. Sci. U S A.*, 88: 6570-6574.
- Li X.H., M. Li, Y.L. Liu, Y.U. Jian, F.X. Wang and J.H. Wang. 2015. Studies on extraction and molecular properties of Gualou seed (*Semen Trichosanthis*) protein perpared from by-products. *Food & Mach.*, 06: 146-149.
- Li, F., X.X. Yang, W.G. Hu, H.C. Xia, Z. Li and Z.C. Zhang. 2003. Purification and characterization of trichokirin-S1, a novel ribosome-inactivating peptide from seeds of *Trichosanthes kirilowii. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai).*, 35: 841-846.
- Liu, J.N., C.X. Wen, T.X. Yang, X.L. Xie and M. Liu. 2013. Study on the Flavonoids Extraction Methods and Parameter Optimization of *Semen Trichosanthis*. *Lishizhen Medic*. & *Mat. Med. Res.*, 24: 2088-2090.
- Ozaki, Y., L. Xing and M. Satake. 1996. Antiinflammatory effect of *Trichosanthes kirilowii* Maxim, and its effective parts. *Biol. Pharm. Bull.*, 19: 1046-1048.
- Shu, S.H., G.Z. Xie, X.L. Guo and M. Wang. 2009. Purification and characterization of a novel ribosome-inactivating protein from seeds of *Trichosanthes kirilowii* Maxim. *Protein Exp. Purif.*, 67: 120-125.
- Song, Y.M., F. Li, L.M. Zhou. 2011. Comparison of Protein Extraction Methods of *Trichosanthis Fructus*. *Chinese J. Exp. Trad. Med. Formulae*, 04: 95-97.
- Song, Y.M., F. Li. 2015. Study on Seed Protein of Trichosanthis Fructus from Some Planting Base in Shangdong Province. World Science and Technology/Modernization of Traditional Chinese Medicine and Materia Medica., 05: 1103-1107.
- Tai, N.W., F. Li, Z. Li, D.H. Zhuang and Z.C. Zhang. 2000. Purification and Partial Characterization of S-trichokirin, A New Small Ribosome-inactivating Protein, from Seeds of *Trichosanthes kirilowii. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai).*, 32: 495-498.
- Theil, E.C. 2012. Ferritin protein nanocages-the story. Nanotechnol. Percep., 8: 7.
- Wagner, H., R. Bauer, D. Melchart and A. Staudinger. 2016. Fructus Trichosanthis - Gualou Semen Trichosanthis -Chaogualouzi. Springer International Publishing.
- Wong, R.N., T.X. Dong, T.B. Ng, W.T. Choi and H.W. Yeung. 1996. alpha-Kirilowin, a novel ribosome-inactivating protein from seeds of *Trichosanthes kirilowii* (family Cucurbitaceae): a comparison with beta-kirilowin and other related proteins. *Int. J. Pept. Protein Res.*, 47: 103-109.
- Xiu, Y.F., X.M. Cheng, L. Liu, W.U. Tao and Z.T. Wang. 2005. Component comparison on different slices of prepared *Semen Trichosanthis. Chinese Trad. & Herbal Drugs.*
- Yan, J., X.J. Gou, X.U. Guang-Yu, X. Tang, J.W. Zhou, H.E. Xue-Qiong and L.I. Chun-Rong. 2008. Study on Free Radical Scavenging Activity of Trichosanthes kirilowii Seed Oil. *Food Sci.*, 29(11): 77-79.
- Yang, X.X., F. Li, W.G. Hu, H.C. Xia and Z.C. Zhang. 2005. Preparation and preliminary application of monoclonal antibodies against Trichokirin-S1, a small ribosomeinactivating peptide from the seeds of *Trichosanthes kirilowii*. *Acta Biochim Biophys Sin (Shanghai)*, 37: 447-452.

(Received for publication 23 April 2018)