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Abstract 

 

To avoid xylem cavitation, plants adopt water manage behaviors from water-conserving to risk-taking to regulate 

stomatal conductance under drought stress, and the behaviors may shift due to sink demand. Arbuscular mycorrhizal (AM) 

fungi form symbioses with plants, generate sink demand and promote stomatal conductance, which would increase water 

loss and vulnerability to xylem cavitation. However, the effect of AM fungi on plant water manage behavior and 

vulnerability to xylem cavitation was rarely reported. The impact of an AM fungus (Rhizophagus irregularis) on growth, 

gas exchange, photosynthesis, and vulnerability to xylem cavitation of Populus × canadensis „Neva‟ was evaluated under 

three water status (70%-75%, 50%-55%, 30%-35% of field capacity). After 250 days, R. irregularis colonized more than 

70% roots, increased biomass accumulation, improved gas exchange, photosynthesis, leaf relative water content, and 

specific leaf area of poplar plants. Drought stress limited R. irregularis colonization rate, plant biomass accumulation, and 

parameters of gas exchange and photosynthesis. Inoculation of R. irregularis seemingly shifted water manage behavior from 

water-conserving toward risk-taking and modulated the vulnerability to xylem cavitation. Results of current study suggested 

that plant genes involved in water management and traits for xylem cavitation may be regulated by AM symbiosis and 

require further study. 
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Introduction 

 

Drought, which limits plant growth and survival, is 

one of the most severe abiotic stresses. Based on 

physiological responds to drought, plants can be classified 

into isohydric and anisohydric species (Attia et al., 2015). 

Isohydric plants display water-conserving behavior to 

maintain a nearly constant leaf water potential, as they 

reduce stomatal conductance and transpiration. Meanwhile, 

anisohydric plants display risk-taking behavior, as they 

maintain stomatal conductance and transpiration and allow 

leaf water potential to drop (Sade & Moshelion, 2014). 

Under drought stress, a continuum was observed from 

isohydric species to anisohydric species for plants based on 

a meta-analysis (Klein, 2014). Moreover, the regulation of 

stomata of angiosperm may change along growing seasons 

and vary between isohydric and anisohydric behavior to 

acclimate environment. The behavior change may due to a 

function of sink demand (Sade & Moshelion, 2014). 

Despite the plant behaviors, water loss via 

transpiration is an inevitable consequence of photosynthesis 

through stomata. Water loss through evaporation of leaf 

mesophyll cell walls generates tension to drive long-

distance water transport in xylem conduits (Tyree & 

Zimmermann, 2002). When the xylem tension under 

drought stress overcomes the capillary forces holding water 

in the pit membrane pores, cavitation emerges and 

hydraulic conductivity and leaf gas exchange will be 

lowered (Fichot et al., 2015). Therefore, maintaining 

photosynthetic gas exchange and growth under drought 

stress requires avoidance of xylem cavitation. (Meinzer & 

McCulloh, 2013).  

Arbuscular mycorrhizal (AM) fungi from 

Glomeromycota form symbiosis with plants and 

improve tolerance against abiotic stresses (Smith & 

Read, 2008; Bahaduiv et al., 2019). In the symbiosis, 

AM fungi enlarge carbon sink as they could consume up 

to 20% photosynthates of plants (Parniske, 2008). 

Moreover, plants form symbiosis with AM fungi usually 

had higher stomatal conductance than their non-

mycorrhizal counterparts, and the promotion of stomatal 

conductance was intensified under drought stress (Augé 

et al., 2015). Higher sink demand may change the 

behavior of plants under drought stress, while higher 

stomatal conductance would generate higher water loss 

through evaporation and may intensify the vulnerability 

to xylem cavitation. However, the influence of AM 

fungus on plant behavior change and vulnerability to 

xylem cavitation was rarely reported. 

Populus spp. is widely planted tree species for high 

economic value and ecological conservation (Eusemann 

et al., 2013; Zhou et al., 2020). The fast growing poplar 

species/genotypes consume a large amount of water, are 

relatively susceptible to drought stress and xylem 

cavitation, and generally considered to be isohydric 

plants (Arango-Velez et al., 2011; Cao et al., 2014; Attia 

et al., 2015). Populus × canadensis (a hybrid of P. nigra 

× P. deltoides) „Neva‟ is widely planted in China (Liu et 

al., 2016), and this hybrid was used in current study to 

evaluate the influence of AM fungus on (1) the 

responding of poplar to intensified drought stress, and 

(2) the vulnerability to xylem cavitation.  
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Materials and Methods 

 

Growth substrate, plant material, and AM fungal 

inoculation: The growth substrate and Populus × canadensis 

„Neva‟ (15 cm in length) cuttings were prepared as described 

by Liu et al., (2016). Cuttings were planted in plastic pots 

(19.5 × 21.5 cm) filled with 5 kg growth substrate described 

above. One cutting was planted in each pot. 

Inoculum of Rhizophagus irregularis was prepared 

and inoculated as described by Liu et al., (2016). 

 

Experimental design and growth condition: The 

experiment consisted of a randomized block design with two 

factors (2 × 3): AM fungal inoculation (R. irregularis 

inoculated plants (AM) and non-inoculated plants (NM)) and 

water regimes (3 water conditions). Each treatment had 6 

replicates. Pots were arranged in a randomized complete 

block design. After transplantation, cuttings were fertilized 

with 100 mL Hoagland‟s solution every 2 weeks and grown 

under well-watered condition. Sixty days post 

transplantation, plants in different water regimes received 

different water to match the well-watered condition (WW, 

70%-75% of field capacity), mild stressed condition (MS, 

50%-55% of field capacity), or severe stressed condition (SS, 

30%-35% of field capacity). Field capacity of growth 

substrate was measured according to Bao (2000). Soil water 

content was controlled by weighing the pots every day. The 

water treatment was applied for 90 days  

The pot experiment was conducted in a greenhouse 

of Northwest A&F University, Yangling under condition 

as described by Liu et al., (2016). 

 

Plant biomass accumulation and mycorrhizal 

colonization: Two hundred and fifty days after 

transplantation, plants were harvested. Fresh weights of 

shoot and root were recorded. Mycorrhizal colonization 

was assessed by the gridline intercept method 

(Giovannetti & Mosse, 1980) after staining with trypan 

blue (Phillips & Heyman, 1970). 

 

Gas exchange and relative chlorophyll content: The 

measurement of poplar leaf gas exchange parameters, which 

included net photosynthetic rate (PN), stomatal conductance 

(gs), intercellular CO2 concentration (Ci), and transpiration 

rate (E), and intrinsic water use efficiency (WUEi), were 

according to the description of Liu et al., (2016).  

The leaves used for gas exchange measurement were 

also used for the relative chlorophyll content 

measurement. The relative chlorophyll content (soil and 

plant analyzer development (SPAD) value) was measured 

with a SPAD meter (SPAD-502 Plus, Konica-Minolta 

Holdings, Inc., Osaka, Japan). 
 

Relative water content and specific leaf area 

measurement: Relative water content (RWC) was 

measured as described by Liu et al., (2016).  

Specific leaf area (SLA) was calculated as the plant 

leaf area divided by the dry mass of leaf (Bao, 2000). 

 

Xylem vulnerability curve: Before harvest, 3 shoot 

sections from each treatment were collected and cut into 

27.4 cm fragment. The Cavitron technique was used for the 

assessment of vulnerability to xylem cavitation (Cochard et 

al., 2005). Xylem vulnerability curve was represented as 

the percentage loss of xylem hydraulic conductance (PCL) 

vs xylem water tension. Vulnerability to xylem cavitation 

was calculated as the water tension (P50) that caused 50 % 

loss of xylem hydraulic conductance. 

 

Data analysis 

 

Statistical analyses were performed using the 

program package Statistica (Version 9.1; StatSoft Inc., 

Tulsa, OK, USA). The ANOVA was used to determine 

the effect of AM fungus and water regimes and their 

interactions. Fisher‟s LSD was performed at P = 0.05 in 

case of significant impact by factor. The Correlation 

analysis between xylem embolism vulnerability and plant 

growth parameters was carried out using Pearson‟ 

correlation coefficients. 

 

Results 

 

Biomass accumulation and mycorrhizal symbiosis: 

After 250 days, the biomass accumulation of P. canadensis 

was recorded (Table 1). The shoot and root biomass 

accumulation under different soil water regimes was 

significantly improved by the inoculation of R. irregularis, 

while drought stress limited plant growth. The root/shoot 

ratio was significantly affected by both R. irregularis and 

drought stress. No mycorrhizal symbiosis was observed in 

NM plant roots. Over 70% AM plant roots were colonized 

by R. irregularis, and the colonization was significantly 

reduced by drought stress. 

 
Leaf RWC, SLA, leaf gas exchange parameters, and 
relative chlorophyll content: Compared with NM 
treatments, inoculation of R. irregularis increased leaf 
RWC and SLA under different water regimes, while 
drought stress decreased leaf RWC and SLA for both AM 
and NM treatments (Table 2). 

Both inoculation of R. irregularis and drought stress 
significantly affected leaf gas exchange parameters and 
relative chlorophyll content (Fig. 1). With the intensified 
drought stress, PN, gs, Ci, E, WUEi, and relative 
chlorophyll content were decreased while the inoculation 
of R. irregularis increased these parameters compared 
with non-inoculated counterparts. 

 
Xylem vulnerability curve and P50: Vulnerability curves 
under different soil water regimes and mycorrhizal status 
were recorded (Fig. 2). All the vulnerability curves were 
“s” shaped. In the non-inoculated treatments, mild 
drought stress did not affect P50 while severe stress 
significantly decreased P50 (Table 2). Inoculation of R. 
irregularis did not affect P50 under well-watered 
condition, while decreased and maintained P50 under 
drought stress. Compared with NM treatment, inoculation 
of R. irregularis decreased P50 under mild stress and 
increased P50 under severe stress. 

 

Correlation analysis: The colonization rate of R. 

irregularis was correlated with leaf RWC, PN, gs, and 

WUEi (Table 3). P50 was highly correlated with leaf 

RWC, SLA, PN, gs, Ci, E, and WUEi. 
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Table 1. Biomass and arbuscular mycorrhizal colonization rate of Populus × canadensis. 

 Shoot FW  

(g) 

Root FW  

(g) 

Total FW  

(g) 

Root/shoot  

ratio 

Colonization 

rate (%) 

WWAM 110.1 ± 7.6 89.3 ± 7.1a 199.4 ± 13.7a 0.81 ± 0.05 85.4 ± 2.0a 

WWNM 94.7 ± 4.0 71.1 ± 2.1b 165.8 ± 4.8b 0.75 ± 0.04 0d 

MSAM 95.1 ± 8.9 76.8 ± 5.3b 171.8 ± 6.1b 0.82 ± 0.13 77.2 ± 2.2b 

MSNM 63.2 ± 10.2 39.2 ± 1.1c 102.5 ± 11.1c 0.63 ± 0.10 0d 

SSAM 66.5 ± 6.5 35.4 ± 4.0c 102.0 ± 8.8c 0.53 ± 0.06 70.4 ± 0.6c 

SSNM 46.7 ± 5.7 22.9 ± 3.7d 69.6 ± 5.5d 0.50 ± 0.11 0d 

PWATER S S S S S 

PAMF S S S S S 

PWATER* AMF NS S S NS S 

Note: WW, well-water; MS, mild stress; SS, severe stress; AM, inoculated with Rhizophagus irregularis; NM, non-mycorrhizal; S, 

significant; NS, not significant; Values with different letters indicated significant difference (LSD-test P = 0.05, n = 3) 

 

Table 2. Leaf relative water content (RWC), specific leaf area (SLA), and xylem embolism vulnerability  

(P50) of Populus × Canadensis. 

 RWC SLA (m
2
 kg

-1
) P50 (MPa) 

WWAM 93.2 ± 1.7 121.3 ± 16.9 -1.99 ± -0.11a 

WWNM 89.6 ± 0.8 96.3 ± 8.0 -2.26 ± -0.23ab 

MSAM 87.6 ± 0.6 109.4 ± 6.2 -2.68 ± -0.16c 

MSNM 84.8 ± 0.8 95.1 ± 3.6 -2.38 ± -0.20b 

SSAM 81.9 ± 1.7 81.2 ± 7.3 -2.70 ± -0.12c 

SSNM 78.8 ± 0.9 68.4 ± 20.4 -3.02 ± -0.14d 

PWATER S S S 

PAMF S S NS 

PWATER* AMF NS NS S 

Note: WW, well-water; MS, mild stress; SS, severe stress; AM, inoculated with Rhizophagus irregularis; NM, non-mycorrhizal; S, 

significant; NS, not significant; Values with different letters indicated significant difference (LSD-test P = 0.05, n = 3) 
 

Table 3. Correlation coefficients among variables involves in RWC, SLA, leaf gas exchange, and xylem 

embolism vulnerability (P50) of Populus × canadensis. 

 RWC SLA PN gs Ci E WUEi 

P50 0.64** 0.84*** 0.78*** 0.77*** 0.75*** 0.81*** 0.60** 

Colonization 0.49* 0.40 0.55* 0.50* 0.46 0.39 0.61** 

Note: RWC, relative water content; SLA, specific leaf area, PN, net photosynthesis; Ci, intercellular CO2 concentration; gs, stomatal 

conductance, E, transpiration rate, WUEi, intrinsic water use efficiency; P50, xylem embolism vulnerability. 

*= Indicate significant different at p<0.05; **= Indicate significant different at p<0.01; ***= Indicate significant different at p<0.001 
 

Discussion 

 

Poplar is widely planted to meet various demands from 

wood production to ecological conservation, and requires a 

large amount of water and nutrient input (Eusemann et al., 

2013; Zhou et al., 2020). Populus × canadensis „Neva‟ is an 

important tree with many desirable characteristics (Liu et al., 

2016). More than 70% of P. canadensis roots were colonized 

by R. irregularis in current study. This was observed in 

previous studies that P. canadensis could form mycorrhizal 

symbioses (Liu et al., 2016; Wu et al., 2017a, b). The 

established symbiosis increased plant biomass accumulation 

(Table 1), and was documented in several independent 

experiments (Liu et al., 2016; Wu et al., 2017a, b).  

Root/shoot ratio is the index used to evaluate plant 

nutrient allocation (Hetrick, 1991). Although plant 

biomass accumulation was increased by R. irregularis, 

the root/shoot ratio was differently affected (Table 1). 

Plant root/shoot ratio was decreased by inoculation of AM 

fungi in previous studies using soybean (Wang et al., 

2011), Medicago truncatula (Saravesi et al., 2014), and 

Lycium barbarum (Zhang et al., 2017). In addition, it was 

attributed to the reliance of plant on AM fungal improved 

nutrients and water exploration and uptake from soil (El-

Mesbahi et al., 2012). However, in other studies using 

Eucalyptus globulus (Chen et al., 2000), P. cathayana 

(Chen et al., 2015), and Robinia pseudoacacia (Zhang et 

al., 2016b), the root/shoot ratio was not affected by AM 

fungi. The foraging strategies that different plants adopted 

for nutrient and water in soil may account for the different 

roles of AM fungi (Chen et al., 2016). The increased 

root/shoot ratio in current study might due to the clonally 

propagated P. canadensis which had specific forage 

strategy and nutrient allocation that would not be affected 

by R. irregularis (Veresoglou et al., 2012). 

Better leaf RWC demonstrated that AM fungus 

inoculation improved poplar leaf water status under 

drought stress. Similar results were observed in previous 

plant-fungi interactions (Zhu et al., 2012; Ortiz et al., 

2015) and it could be attributed to the AM fungi which 

improved water uptake and transportation through 

aquaporin genes expression regulation and hydraulic 

conductivity modulation (He et al., 2016; Sánchez-

Romera et al., 2016; Hu et al., 2017).  
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Fig. 1. Effect of AM fungus and water condition on gas exchange and chlorophyll related parameters. PN, net photosynthesis; Ci, 

intercellular CO2 concentration; gs, stomatal conductance, E, transpiration rate, WUEi, intrinsic water use efficiency; WW, well-water; 

MS, mild stress; SS, severe stress; AM, inoculated with Rhizophagus irregularis; NM, non-mycorrhizal; s, significant; ns, not 

significant; Bars indicated means ± SD (n = 3). Values with different letters indicated significant difference (LSD-test P = 0.05, n = 3) 

 

Under drought stress, SLA that indicate leaf area per leaf 

dry mass, was used to describe the variation of plant leaf 

structure (Marron et al., 2003) and plant growth potential 

(Poorter & Van der Werf, 1998). Reduced SLA demonstrated 

a higher mesophyll and protein density, and this was 

attributed to the drought affected leaf expansion (Liu & 

Stützel, 2004). For poplar, the reduction of SLA under 

drought stress was suggested genotype dependent (Monclus 

et al., 2006). In current study, drought stress showed a 

significant effect on SLA of P. canadensis. Reduced SLA 

could be considered as a limitation of biomass accumulation 

and photosynthesis, which were also observed in current 

study (Table 1 and Fig. 1). Positive influence of AM fungi on 

plant SLA was observed in previous studies (Zhang et al., 

2016a; Sun et al., 2017), and was consistent with the 

inoculation of R. irregularis increased SLA under different 

water regimes in current study. The positive influence could 

attribute to the AM fungi improved plant water status 

discussed above and the improved N, P, and K nutrient 

(Zhang et al., 2016a; Wu et al., 2017; Zhang et al., 2017). 
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Fig. 2. Xylem vulnerability curve of Populus × canadensisunder 

different treatments. WW, well-water; MS, mild stress; SS, 

severe stress; AM, colonized with Rhizophagus irregularis; NM, 

none-mycorrhizal. 

 

AM fungi supply mineral nutrients and water in 

exchange of lipid from plant to complete life span (Jiang 

et al., 2017). Under drought stress, plants with AM 

symbiosis usually had higher biomass accumulation than 

those without the help of AM fungi (Sun et al., 2017; 

Zhang et al., 2017). In current study, the photosynthesis 

parameter was improved by the inoculation of R. 

irregularis (Fig. 1) and could explain the improved 

biomass accumulation. However, the reduction of drought 

stress on biomass accumulation was more obvious. As a 

woody species, hybrid poplar is generally considered to 

adopt relative isohydric behavior (Sade et al., 2012; Attia 

et al., 2015). The response of P. canadensis with AM 

symbiosis to drought stress in current study seemingly 

adopted anisohydric behavior. One possible explanation 

might be the AM fungus improved individual 

physiological condition via water and nutrient uptake. On 

the other hand, this might be that AM fungus regulated 

behavior change, as it demands photosynthates from host 

plants (Boldt et al., 2011; Augé et al., 2015).  

As a tree species requires a large amount of water, 

poplar is considered drought sensitive and highly 

susceptible to xylem cavitation (Arango-Velez et al., 

2011). In current study, the vulnerability curve of P. 

canadensis was “s” shaped (Fig. 2) and similar with 

other pure and clonal poplars analyzed in previous 

studies (Fichot et al., 2015). Under intensified water 

stress, the stem xylem vulnerability to cavitation was 

found to acclimate to the drought severity (Awad et al., 

2010). The P50, used in current study to represent xylem 

tension at which xylem hydraulic conductivity lost 50%, 

also decreased with the reduction of soil water content 

(Table 2). Inoculation of R. irregularis did not 

significantly increase P50 under well-watered condition, 

although the vulnerability curve in the inoculated 

treatment shifted toward higher xylem tension. Taken 

the stomatal conductance and transpiration rate 

increment into consideration, inoculation of R. 

irregularis under well-watered condition maintained the 

resistance of P. canadensis to xylem cavitation as the 

driving force for water uptake increased (Tyree & 

Sperry, 2003; Meinzer & McCulloh, 2013). Under 

drought stressed conditions, the poplar inoculated with 

R. irregularis maintained P50 despite drought severity. 

Moreover, this might be considered as the decreased 

drought sensitivity of P. canadensis by inoculation of R. 

irregularis. A possible explanation might be the 

„priming‟ effect of AM fungi against drought stress as 

they used for biotic stress (Jung et al., 2012). To 

guarantee photosynthetic gas change and growth, the 

water flow from root to leaf must be assured and the 

xylem cavitation should be eliminated (Attia et al., 

2015). In current study, the P50 was highly correlated 

with leaf RWC, SLA, and photosynthetic parameters 

(Table 3). This indicated a linkage between water 

consumption and maintenance of water transport (Klein, 

2014). Colonization rate of R. irregularis showed 

correlation with leaf RWC and some photosynthetic 

parameters but the correlation coefficients were smaller 

than that of P50. This indicated an indirect link between 

colonization status and influence of plant physiology 

under drought stress (Marulanda et al., 2006). 

 

Conclusion 

 

Our results indicated that inoculation of R. 

irregularis improved biomass accumulation, leaf RWC, 

SLA, and photosynthesis of P. canadensis under different 

water regimes. The xylem vulnerability to cavitation of P. 

canadensis was acclimated to drought stress, and 

modulated by the inoculation of R. irregularis under 

intensified drought stress. However, the specific influence 

of AM fungus on the plant traits that affect xylem 

vulnerability to cavitation remains elusive. Since AM 

fungi could systematically regulate plant genes expression 

(Calabrese et al., 2017), further studies focus on the 

regulation of AM fungi on plant genes involved in xylem 

cavitation development could unveil the role of AM fungi 

in strengthening plant resistance of xylem cavitation and 

drought tolerance. 
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