QUALITY MEASUREMENTS OF VARIOUS TYPES OF WASTEWATERS AND THEIR IMPACTS ON PLANT GROWTH

PARAS SHAH^{1*}, MUHAMMAD ABID¹, KOUSAR YASMEEN², TOOBA NAVEED³, ABDUL HAKEEM SHAIKH¹, NUSRAT JABEEN⁴, NOUREEN BASHEER¹, DAIM DARBAN⁵ AND ADAM KHAN⁶

¹A.G. Lab of Aerobiology and Plant Pathology, Department of Botany, Federal Urdu University of Arts,

Science and Technology, Gulshan-e-Iqbal Campus, Karachi-75300, Pakistan

²Department of Chemistry, Federal Urdu University of Arts, Science and Technology,

Gulshan-e-Iqbal Campus, Karachi-75300, Pakistan

³Center for Environmental Studies, Pakistan Council of Scientific and Industrial Research (PCSIR), Karachi, Pakistan ⁴Department of Microbiology, University of Karachi, Karachi, Pakistan

⁵Department of Agriculture, School of Agriculture policy and Development, The University of Reading, RG6 6AR, UK. ⁶Department of Botany, University of Buner, Khyber Pakhtunkhwa, Pakistan

*Corresponding author's email: abid@fuuast.edu.pk

Abstract

Wastewater is a rich source of essential nutrients for growth of plants. But accumulation of heavy metals restrict the uptake of nutrients that leads to the deficiency of nutrients in plant body and ultimately reduce its growth. In present study, different types of wastewaters from the Malir (Domestic and Industrial wastewater) and Lyari river were collected and analyzed to evaluate their quality. The effect of wastewater assessed on germination and growth parameters of Abelmoschus esculentus (Okra) and Phaseolus vulgaris (Common Beans). It was evaluated that pH and dissolved oxygen were detected to be under permissible limit of World Health Organization water-quality-standards in DWW (Domestic wastewater) and LWW (Lyari wastewater). Higher amounts of essential nutrients such as Ca, K and Mg were perceived in DWW. Consequently DWW and LWW significantly improved the germination (%) and growth of A. esculentus and P. vulgaris. IWW (industrial wastewater) and mix wastewater (combination of DWW and IWW) reduced germination (%) as well as growth of crops. Higher amount of as and Cd were detected in IWW. Thus, it might be due to their increased concentrations that effected plant growth. However, plant growth depends on quality of applied water as well as variety of crop that tolerate their characteristics.

Key words: Quality of wastewaters, Common Beans, Okra, Germination %, Plant growth.

Introduction

Various countries of the world utilize treated wastewater to irrigate the crop (Pedrero et al., 2010; Barbagallo et al., 2014; La Bella et al., 2016). More than 20 million hectares of the land all over the world is irrigated with wastewater (Abaidoo et al., 2010). Since farmers are compulsive to utilize wastewater in those regions where fresh water is less available to irrigate agriculture land. According to WHO (2006) and Hamilton et al., (2006) approximately 10% of the world's population consumes crops irrigated with wastewater.

Domestic and industrial wastewater are either disposed-off or utilized for the irrigation of agriculture land which build opportunities and problems as well. The composition of domestic and industrial water varies from each other (Mitra & Gupta, 1999; Antil, 2012) such as large amount of organic matter present in domestic water whereas industrial water contains toxic materials. Thus, Wastewater from domestic and municipal resources creates opportunities for farmers to utilize for crop irrigation as it contains organic matter and rich in macro and micronutrients (Feigin et al., 1991; Pescod, 1992; Gupta et al., 1998; Brar et al., 2000). In consequence, Wastewater has both advantages and disadvantages for irrigation. Advantages like it improves the yield, recycles the organic matter/nutrients, decreases the fertilizer amount/cost, evades the pollution from the surface of water bodies, enhance the economic efficiency and preserves the freshwater sources (Khaleel et al., 2013). Whereas, it has also some disadvantages like storage capacity, careful planning, diseases caused by pathogens, availability of toxic material that pollute the ground water (Peña et al., 2014). Hence, nature of the wastewater is subjected by its source from where it is produced.

Pakistan is a developing country which produces a large extent of untreated wastewaters from industries as well as domestics. Due to the scarcity of fresh water, farmers are compulsive to utilize wastewater for irrigation land. On the other hand, wastewater is a rich source of organic matters and essential nutrients of plant growth (Khadhar et al., 2010; Haddaoui et al., 2016). Thus, it is not only alternate of fresh water but also replace the harmful chemical fertilizers of plants. However, sustained and continued utilization of wastewater become toxic to plant growth as well as soil nature (Adriano, 1986; Ghafoor et al., 2004; Qadir & Oster, 2004) as it contains heavy metals and other harmful chemicals.

Plant body performs various metabolic processes such as germination, photosynthesis, respiration, plant-water relation and mineral uptake etc. For the enactment of these activities, macro and micro-nutrients are vital for the body of plant. Macro-nutrients like Potassium, Calcium, Magnesium etc. are essential for growth of plant on large scale. Whereas, micro-nutrients are needed for plant in little amount. However, large amount of these elements in irrigation water act as toxic metals for plant body such as Iron, Zinc, Copper, Cadmium etc. Heavy metals in wastewater induces abiotic stress on plant growth and decrease leaf expansion that leads to the minimum performance of photosynthesis (Shah et al., 2013; Divyapriya et al., 2014). Due to high amount of other

harmful chemical in irrigation water, plant germination, growth, root elongation and other developmental phases are adversely affected (Salem *et al.*, 2015, Pan & Chu, 2016).

The main purpose of this study is to evaluate the quality of wastewater collected from Malir and Lyari rivers (wastewater channels) and theirs effects on germination and plant growth.

Materials and Methods

Rivers of Malir and Lyari are the major reservoirs of wastewater in the city of Karachi, Pakistan. They contain discharged wastewater of nearby various industries, factories, domestics etc. The sites were selected where crops were growing by utilizing wastewater of these rivers for irrigation.

Wastewater samples from the Malir river (Domestic and Industrial wastewater) located at Quaidabad and Lyari river nearby Gulshan Chowrangi, Karachi (Fig. 1) were collected for determining its quality and effect on seed germination and plant growth. Physiochemical analysis (like Electric Conductivity, pH, Total Dissolved Solids, salinity and Oxidation Reduction Potential) of water samples was carried out by using Hanna Multi parameter meter model HI9828. While, alkalinity, Total Suspended Solids (TSS), Dissolved Oxygen (DO), Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) were analyzed through standard methods (Anon., 1998). The measurements of essential nutrients (Ca, K and Mg) and metals like As, Cd, Cu, Fe, Ni, Pb and Zn recorded were by Flame Atomic Absorption Spectrophotometer (FAAS) PE-AAnalyst 700. Using appropriate drift blanks the amount of metals were determined and external calibration was used for quantitative analysis of metals.

Petriplate experiment was designed to determine the effect of various wastewaters such as domestic wastewater (DWW), industrial wastewater (IWW), wastewater of Lyari river (LWW) and mix wastewater of DWW and IWW from Malir river on germination of seeds of different crops e.g. *Abelmoschus esculentus* and *Phaseolus vulgaris*. Surface sterilized seeds were placed on double layered filter paper laying in petriplates (9 cm) and moistened by 2 mL of respective wastewater. Each treatment were replicated with three plates. With the comparison of wastewater treatments, distilled water were used as control. Number of seeds were examine to germinate on daily basis at average temperature of day time 30°C and night 27°C. After 10 days, germination percentage (%) were calculated by following formula (Anon., 1999):

Germination % =
$$\frac{\text{No. of seeds germinated}}{\text{Total no. of seeds}} \times 100$$

Length of root, shoot and fresh biomass of seedlings were measured after 10 days of germination. While, dry biomass were recorded after oven drying of seedlings at 60°C.

Dependency of all quality-parameters of wastewaters with each other was determined through Pearson correlation coefficient and statistics on germination percentage and growth parameters of both crops were carried out through analysis of variance (ANOVA) by SPSS 20.

Fig. 1. Study area map originated by Arc GIS. Malir and Liyari rivers from origin to end were shown in the map by blue lines.

Results

The measures of all physio-chemical parameters with permissible limit of WHO water quality standards have been shown in Fig. 2. The highest amounts of EC, TSS, alkalinity and BOD, COD were found in all types of wastewaters then acceptable limits of WHO standards (Figs. 2 and 3). pH of DWW and LWW had been detected permissible in limit (8.0) whereas IWW was much higher in pH value than WHO standard value (10.2). IWW had higher rate of ORP (310.6 mV) and salinity (3.92 %) then DWW and LWW while DO in all the wastewater samples was very lower than the permissible limit of WHO standard (9.2 mg/L). TDS was found limited only in DWW (940 mg/L) as compared to other wastewaters as shown in Fig. 2.

Amount of potassium was found higher in DWW (18.07 mg/L) and IWW (18.02 mg/L) as compared to the LWW (5.295 mg/L) whereas lowest amount of magnesium have been detected in IWW (5.631 mg/L) and LWW (5.046 mg/L). Highest rate of calcium was present in DWW (67.53 mg/L) than LWW (17.77 mg/L), while IWW had lesser quantity of calcium (8.567 mg/L).

With the comparison of WHO water quality standards, heavy metals like copper, nickel and zinc were found lower than the permissible limits in all types of wastewater samples (Table 2). Whereas, Fe and Pb found below the detection limit. Arsenic was greater in IWW (0.422 mg/L) than the WHO standard value (0.01 mg/L) but with the comparison of NEQS As was under the limit, while LWW had the amount of As less than the detection limit. In case of cadmium, higher amount have been detected in IWW (0.004 mg/L) as compared to DWW (0.003 mg/L) and LWW (0.002 mg/L) that had permissible limit of cadmium.

The pearson correlation among physiochemical measures, essential nutrients and heavy metals in all forms of wastewaters have been shown in (Table 3). on their significance level. Among all variables, significant correlation of pH was found with ORP (r = 1.000, p<0.05) and alkalinity (r = 0.998, p<0.05). EC was highly significant with TDS (r = 1.000, p<0.01) whereas correlation of salinity found significant to the TSS (r = 0.997, p<0.05). ORP and alkalinity observed to be significant at r = 0.999, p<0.05. COD was negatively correlated with Mg (r = -0.999, p<0.05), although, correlation of K was negative with Cu and Zn (r = -1.000, p<0.01). However, highly significant correlation of Cu and Zn was perceived at r = 1.000, p<0.01.

The present study showed significant effects of wastewaters on seed germination of *A. esculentus* (F = 3.769, p<0.040) as well as *P. vulgaris* (F = 5.700, p<0.012). It is evaluated that DWW and LWW significantly induced the germination of both crops as it is shown in table 4. Whereas application of IWW decreased the germination percentage of *A. esculentus* (26.67 ± 6.66%) and *P. vulgaris* (66.67 ± 0.882%). Mix water found to be similar as control on *A. esculentus* (53.33 ± 17.63%) however it declined the germination of *P. vulgaris* (66.67 ± 6.66%).

All types of wastewaters significantly influenced on the length of root (F = 12.833, p<0.001) and shoot (F = 10.002, p<0.003) in *A. esculentus* as well as on the root (F = 5.394, p<0.017) and shoot length (F = 10.865, p<0.002) of *P. vulgaris.* With the comparison of control (tap water), the application of DWW and LWW remarkably increased the root and shoot length of *A. esculentus* and *P. vulgaris* as shown in table 4. Whereas, IWW severely reduced the length of plant of both crops. Mix water did not show any effect on the root length of *A. esculentus* (3.708 ± 0.542 cm), however, it enhanced the length of shoot (4.813 ± 0.688 cm). Although, root and shoot length of *P. vulgaris* became negatively affected by Mix water (Table 4).

Wastewaters considerably impacted on the root fresh (F = 5.632, p < 0.019) and dry biomass (F = 6.638, p < 0.019)p < 0.012) of A. esculentus moreover fresh (F = 9.555, p < 0.003) and dry biomass (F = 4.240, p < 0.034) of roots of P. vulgaris. Wastewaters like DWW, IWW and Mix water adversely affected the fresh and dry biomass of roots of A. esculentus as compared to control (Table 4). Whereas, LWW improved the fresh biomass of A. esculentus to 0.052 ± 0.009 g but dry biomass retained as control (0.004 \pm 0.000 g). On the other hand, fresh biomass of roots of P. vulgaris increased with the application of DWW (0.201 \pm 0.011 g) and LWW (0.215 \pm 0.034 g) as compared to the control (0.119 \pm 0.022 g). However, dry biomass of roots were increased only by DWW (0.026 \pm 0.005 g), while LWW was not showed any effect on dry biomass of *P. vulgaris* $(0.020 \pm 0.002 \text{ g})$. Shoot fresh biomass of both crops A. esculentus (F =39.658, p < 0.000) and P. vulgaris (F = 3.935, p < 0.041) were significantly increased by DWW and LWW as shown in table 4, but IWW and Mix water considerably reduced the fresh biomass of shoot of both plants. Although, dry biomass of shoots in A. esculentus (F =9.587, p<0.004) and P. vulgaris (F = 4.194, p<0.035) were noticeably decreased by all types of wastewaters. However, with the comparison of control (0.264 ± 0.016) g), dry biomass of shoot in P. vulgaris was slightly increased by applying mix water $(0.276 \pm 0.022 \text{ g})$.

Discussion

The physiochemical parameters of wastewaters from different sites i.e., Malir and Lyari river along with the comparison of WHO standards of water quality have been shown in Fig. 2. The swift population and instant development of industries are responsible in spreading pollution to the water bodies through direct loading of waste discharges to the water channels. These discharges from homes, industries, pharmaceutical companies alter the nature of water bodies in which they are fraternizing. The results of physiochemical analysis, presence of heavy metals and essential nutrients for the quality of the nature of these wastewaters have been given in Fig. 2, (Tables 1 & 2).

 Table 1. Concentrations of essential nutrients in various

	typ	es of wastewa	iters.	
Essential nutrients	Units	Domestic water	Industrial water	Lyari water
K	mg/L	18.07	18.02	5.295
Mg	mg/L	19.62	5.631	5.046
Ca	mg/L	67.53	8.567	17.77

Fig. 2. pH (A), electrical conductivity (B), salinity (C), ORP (D), total dissolved solids (E), total suspended solids (F), alkalinity (G), dissolved oxygen (H), biological oxygen demand and (I) chemical oxygen demand (J) have been shown in wastewater samples with the comparison of tap water as control.

Fig. 3. Effect of different types of wastewater on length of A. esculentus (A) and P. vulgaris (B) seedlings.

Table 2. C	oncentratio	ns of heavy met	als in wastewate	r with the co	mparison of water quality star	ndards of WHO and NEQS.
Heavy metals	Units	Domestic water	Industrial water	Lyari water	Drinking water quality standards (WHO)	Water quality standards (NEQS)
Fe	mg/L	BDL	BDL	BDL	0.30	2.0
Cu	mg/L	0.003	0.003	0.012	2.00	1.0

BDL

0.103

BDL

BDL

0.002

0.01

3.00

0.01

0.07

0.003

Kev note	· BDL =	: Relow	the	detection	limit

mg/L

mg/L

mg/L

mg/L mg/L BDL

BDL

0.287

0.003

0.003

BDL

BDL

0.422

0.016

0.004

Pb

Zn

As

Ni

Cd

Through the results of this study is revealed that physiochemical parameters of all wastewater samples were found relatively higher than the permissible limit of water quality standards. pH of IWW was alkaline in nature which is comparatively higher than quality standards of Anon., (2000) and WHO (2006). While DWW and LWW had permissible level of pH. It is the chief parameter for examining the quality of water and valuable contrivance for exploration of water characteristics. The increased level of pH influences the other physiochemical properties of water bodies (Gupta et al., 1992, Gowrisankar et al., 1997) that adversely alter the nature of water. Other parameters like alkalinity, total suspended solids, BOD and COD have been found greater than permissible limits of standard water quality in all water samples. The higher amount of BOD shows the enormous amount of dissolved oxygen required by aerobic microorganisms to decompose material present in wastewater. organic Greater concentration of organic substances needs higher amount of oxygen to break down that leads to heighten the amount of BOD. Whereas, extent of COD indicates the amount of oxygen utilized for chemical oxidation of the organic impurities into the inorganic matters. According to Islam (2014), the quantity of COD is based on the breakdown of organic substances in wastewater without the contribution of microorganisms. Although, acceptable amount of TDS was detected only in DWW according to the WHO limits. Das et al., (2010) also reported the higher concentration of TDS in wastewater. It is due to the existence of dissolved inorganic and organic impurities which leads to the higher concentration of TDS in wastewaters.

The heavy metals are commonly present in wastewaters (Ping et al., 2011) which includes iron, copper, lead, zinc, arsenic, nickel, cadmium etc. The higher amount of these metals causes environmental problems when release into water channels. The small amount of heavy metals is also present in water bodies naturally by means of airborne dust, weathering and erosion of bed rock material, vegetation, forest conflagration and ore deposits (Fernandez-Leborans & Herrero, 2000; Ogovi et al., 2011). But their higher accumulation is due to the direct or indirect activities of human such as increased urbanization, expanded industrialization, traffic pollution etc. Due to their nondegradable property, they accumulate in the environment (Sharma et al., 2007) which results in the destruction of ecosystem. In the present study, heavy metals like iron, copper, zinc and nickel were found under the permissible limit of WHO and NEQS. Whereas, arsenic and cadmium were found to be higher than quality standards of water. Increased amount of cadmium was detected in IWW while DWW and IWW were found to be save in quantity of cadmium. Jan et al., (2010) reported greater concentration of cadmium in wastewater which was used to irrigate the agriculture land in Peshawar, Pakistan. Farooqi et al., (2009) found adverse effects of cadmium on the seedling growth of Albizia lebbeck (L.) Benth. According to Gardea-Torresdey et al., (2005), higher concentration of cadmium negatively influence on the germination of seed and lipid content in plant body.

0.5

5.0

1.0

1.0

0.1

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	73 1 63 0.916 38 0.945 41 0.803 80 0.881 41 0.803 80 0.881 41 0.803 80 0.881 92 0.106 94 -0.106 94 -0.330 94 -0.379 94 -0.379 94 -0.379 94 -0.379 95 0.408 95 0.408 95 0.408 91<(2-tailed); *** 12 -tailed); ***	1 0.997 0.495 0.495 0.616 0.676 0.302 0.645 0.675 0.562 0.562 0.562 0.562 0.562 0.562 0.562 0.562 0.562 0.562 0.622 0.622 0.622 0.624 0.054 0.220 0.220 0.220 0.222 0.417 0.905 0.565 0.667 0.622 0.622 0.624 0.624 0.624 0.622 0.624 0.676 0.6676 0.6676 0.226 0.672 0.226 0.226 0.672 0.6620000000000	1 0.989 -0.679 -0.934 -0.934 -0.934 -0.517 0.676 -0.517 0.078 -0.517 0.078	1 -0.565 -0.565 -0.999* -0.976 -0.372 -0.157 -0.372 -0.373 -0.373 -0.373 -0.373 -0.373 -0.373 -0.373 -0.373 -0.966 -0.373 -0.960 -0.373 -0.960 -0.362 -0.960 -0.360 -0.362 -0.960 -0.362 -0.960 -0.362 -0.960 -0.362 -0.960 -0.362 -0.960 -0.365 -0.960 -0.372 -0.9600 -0.9600 -0.9600 -0.9600 -0.9600 -0.9600 -0.9600 -0.9600 -0.90	3 1 2 0.984 4 0.119)** -0.530 0 0.748 0 0.748 0 0.353 0 -0.258 1 0.035 -ailed)	1 -0.061 -0.369 -0.376 -0.376 -0.178 -0.178 -0.128 -0.145	1 -0.905 0.748 -0.902 1 0.928 -0.928 -0.996	1 -0.959 -0.960 -0.962 -0.962 -0.962 -0.966 -0.408 -0.866 -0.690	1 -0.979 -0.862 0.948	3 1 8 0.956 1
alin 0.991 1 alin 0.991 0.883 1 alin 0.991 0.883 1 BRP 1.000° 0.794 0.986 1 DS 0.810 1.000° 0.794 0.993° 0.773 DS 0.910 0.903° 0.773 0.997° 0.974 0.974 DS 0.910 0.903 0.428 0.950 0.926 0.974 0.926 SS 0.9457 0.916 0.373 0.520 0.254 0.286 OD 0.3300 0.803 0.4455 0.836 0.836 0.836 COD 0.4497 -0.1066 0.373 0.520 0.523 0.051 0.223 COD 0.4497 0.0111 -0.3690 0.735 0.836 0.886 0.9876 0.986 0.235 0.0995 0.2352 0.641 0.705 0.996 0.756 0.974 0.0260 0.735 0.934 <	73 1 63 0.916 38 0.945 41 0.803 80 0.881 49 -0.106 14 -0.898 71 -0.962 52 0.103 94 -0.379 95 0.408 86 0.657 95 0.408 12 0.405 13 -0.511 14 -0.379 15 0.111 16 0.103 17 -0.962 18 0.111 19 0.103 106 0.095 11 0.657 12 0.408 13 -0.6103 14 -0.10403 15 0.408 16 0.408 17 0.607 18 0.408 19 0.408 10 0.408 11 0.408 12 0.408 12 14	1 0.997 0.495 0.616 0.562 0.616 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.527 0.520 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.627 0.668 0.771 0.905 0.668 0.741 0.056 0.668 0.741 0.056 0.668	1 0.989 -0.679 -0.983 -0.983 -0.983 -0.983 0.676 -0.857 0.682 -0.517 0.078 -0.217 0.078	1 1	3 1 2 0.984 4 0.119 0 0.748 0 0.748 0 0.353 0 0.353 1 0.035 -0.258 1 0.035 -1 0.035					3 1 8 0.956 1
alin 0.991 0.883 1 RP 1.000^{*} 0.794 0.986 1 DS 0.810 0.773 0.997^{*} 0.774 0.997^{*} 0.794 0.77 DS 0.810 1.000^{**} 0.883 0.794 0.77 DS 0.916 0.977 0.916 0.971 0.96 OD 0.300 0.803 0.445 0.224 0.22 OD 0.300 0.803 0.428 0.274 0.22 OD 0.300 0.803 0.428 0.2744 0.22 OD 0.497 0.106 0.373 0.520 0.65 OD 0.497 0.106 0.333 0.520 0.523 0.523 OD 0.225 0.333 0.735 0.2616 0.753 0.523 0.523 0.523 OD 0.235 0.333 0.739 0.739 0.739 0.769 0.769 0.769 D 0.2661 0.09	73 1 63 0.916 38 0.945 41 0.881 49 -0.106 14 -0.898 71 -0.962 54 0.330 52 0.103 94 -0.379 94 -0.379 95 0.408 16 0.657 95 0.408 16 -0.671 17 -0.962 18 0.330 19 -0.103 10 -0.104 11 -0.962 12 -1.11 13 -0.103 14 -0.103 15 0.111 16 0.605 17 -0.95 18 (.2-tailed); *** 17 -1.11 16 -1.11 17 -1.11 18 0.165 19 0.1605 10 -1.11 11 -1.11 12 -1.11	1 0.997 0.495 0.616 0.562 0.616 0.645 0.645 0.675 0.645 0.676 0.645 0.676 0.645 0.772 0.525 0.305 0.622 0.305 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.626 0.626 0.626 0.626 0.626 0.626 0.626 0.626 0.626 0.626 0.6660 0.666 0.666 0.666 0.6660 0.6660 0.6660 0.6660 0.6660 0.6660 0.6	1 0.989 -0.679 -0.983 -0.983 -0.983 -0.298 0.676 -0.517 0.657 0.657 0.051 0.078 -0.217 0.078	1 1 -0.565 -0.565 1 -0.976 0.372 -0.157 0.902 0.568 -1.000 0.568 -1.000 0.568 -0.096 0.221 0.068 0.221 0.068 0.221 0.068 0.201 level (2-	3 1 2 0.984 4 0.119 0 0.748 0 0.748 0 0.353 1 0.035 1 10.035 1 10.035					3 1 8 0.956 1
alin 0.991 0.883 1 RP 1.000^{*} 0.794 0.986 1 DS 0.810 1.000^{**} 0.794 0.794 0.773 DS 0.810 1.000^{**} 0.833 0.794 0.773 DS 0.910 0.983 0.794 0.773 SS 0.910 0.997^{*} 0.971 0.96 OD 0.933 0.428 0.274 0.29 OD 0.303 0.803 0.428 0.274 0.29 OD 0.303 0.803 0.428 0.274 0.25 OD 0.435 0.881 0.555 0.411 0.36 0.445 0.733 0.735 0.233 0.735 0.253 0.523 0.0501 0.933 0.735 0.734 0.736 0.735 0.0461 0.095 0.739 0.739 0.733 0.733 0.733	73 1 63 0.916 38 0.945 41 0.803 80 0.845 41 0.803 80 0.881 41 0.803 80 0.881 41 0.803 80 0.881 71 -0.962 71 -0.962 71 -0.962 74 -0.330 52 0.103 94 -0.379 94 -0.379 95 0.405 86 0.657 95 0.4095 86 0.657 95 0.4095 81<(2-tailed); **.	1 0.997 0.616 0.616 0.616 0.645 0.645 0.645 0.645 0.645 0.676 0.645 0.676 0.645 0.772 0.645 0.772 0.682 0.622 0.305 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.647 0.668 0.666 0.666 0.666 0.666 0.666 0.666 0.666 0.666 0.666 0.666 0.666 0.666 0.666 0.666 0.666 0.676 0.666 0.676 0.666 0.676 0.771 0.685 0.771 0.685 0.771 0.685 0.771 0.685 0.565 0.5660 0.566 0.5660 0.5660 0	1 0.989 -0.679 -0.934 -0.934 -0.934 -0.517 0.676 -0.517 0.078 -0.217 0.078	1 -0.565 -0.999* -0.976 0.373 0.373 0.373 0.906 0.562 -0.773 0.966 0.568 -1.000 0.568 -1.000 0.568 -0.986 0.864 0.864 1.006 0.221 0.864 1.006 0.221 0.056 1.006 1.006 1.006 1.006 1.007 1.006 1.006 1.006 1.007 1.006 1.006 1.006 1.006 1.006 1.007 1.006 1.006 1.007 1.006 1.006 1.006 1.006 1.006 1.007 1.006	3 1 2 0.984 4 0.119)** -0.530 0 0.748 0 0.353 0 0.353 1 0.035 -ailed)					3 1 8 0.956 1
RP 1.000* 0.794 0.986 1 DS 0.810 1.000* 0.998^* 0.773 0.999^* 0.773 DS 0.810 1.000* 0.997^* 0.971 0.997^* 0.774 0.971 0.997^* 0.774 0.971 0.997^* 0.774 0.971 0.997^* 0.774 0.971 0.997^* 0.774 0.724 0.724 0.724 0.224 0.220 0.960 0.988 0.2520 0.641 0.223 0.050 0.803 0.813 0.223 0.051 0.223 0.051 0.223 0.051 0.223 0.051 0.223 0.051 0.223 0.051 0.223 0.051 0.223 0.051 0.223 0.051 0.223 0.051 0.223 0.0516 0.773 0.0516 0.760 0.760 a 0.0261 0.023 0.0133 0.0216 0.07516 0.07516 0.7736 0.879 <	73 1 63 0.916 38 0.945 41 0.803 80 0.841 41 0.803 80 0.881 49 -0.106 14 -0.898 71 -0.962 71 -0.962 74 0.330 52 0.103 94 -0.379 94 -0.379 95 0.408 51 (2-tailed); **. 51 (2-tailed); **.	1 0.997 0.495 0.616 0.302 0.645 0.645 0.645 0.645 0.676 0.662 0.645 0.772 0.682 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.667 0.668 0.772 0.668 0.772 0.668 0.771 0.668 0.771 0.668 0.771 0.668 0.666 0.677 0.676 0.672 0.622 0.622 0.626 0.6688 0.668 0.668 0.6688 0.6680000000000	1 0.989 -0.679 -0.933 -0.934 -0.298 0.676 -0.517 0.682 -0.517 0.078 -0.217 0.078	1 -0.565 -0.565 -0.999* -0.976 0.53 -0.902 0.562 -1.000 0.568 -0.073 0.968 0.221 0.688 0.221 0.688 0.201 0.688 0.688 0.201 0.688 0.686	3 1 2 0.984 4 0.119 0 0.748 0 0.748 0 0.353 0 0.353 1 0.035 -ailed)					3 1 8 0.956 1
Ikal 0.998 0.773 0.9997 0.9991 0.77 DS 0.810 1.000** 0.883 0.971 0.997 0.901 SS 0.977 0.916 0.997* 0.971 0.901 0.006 SS 0.945 0.997* 0.971 0.916 0.20 0.926 0.926 OD 0.300 0.881 0.555 0.411 0.36 0.520 0.950 0.950 OD 0.300 0.803 0.428 0.773 0.520 0.51 0.252 OD 0.497 0.106 0.373 0.523 -0.45 0.95 0 0.235 -0.962 -0.773 0.523 -0.516 0.25 0 0.235 -0.379 0.099 0.261 0.25 0.516 0.75 0 0.661 0.095 0.552 0.681 0.76 0.55 0.65 0.65 0 0.9111 -0.369 0.775 0.980 0.980 0.879 0.86 0 0.2661 0.095 0.572	73 1 63 0.916 38 0.945 41 0.803 80 0.881 49 -0.106 14 -0.898 71 -0.962 52 0.103 94 -0.379 95 0.411 96 0.057 97 0.111 96 0.057 97 0.111 96 0.045 86 0.657 97 0.403 98 0.607 98 0.607 99 0.403 90 0.657 91 0.607 92 0.4013 93 0.605 94 0.605 95 0.403 96 0.657 97 0.605 98 0.605 98 0.605 98 0.605 98 0.605 98 0.605 98 0.605	1 0.997 0.616 0.302 0.616 0.562 0.645 0.645 0.645 0.676 0.682 0.676 0.682 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.668 0.771 0.905 0.668 0.741 0.058 0.741 0.688	1 0.989 -0.679 -0.933 -0.934 -0.298 0.676 -0.517 0.682 -0.517 0.078 -0.217 0.078	1 -0.565 -0.565 -0.999* -0.976 0.562 -0.157 0.906 0.568 -1.000 0.568 -0.773 0.968 0.221 0.688 0.221 0.688 0.221 0.688 0.201 0.688 0.201 0.688 0.688 0.201 0.688 0.696 0.688 0.688 0.688 0.688 0.688 0.688 0.688 0.686 0.666	3 1 2 0.984 4 0.119 0 0.748 0 0.748 0 0.353 0 0.353 1 0.035 -ailed)					3 1 8 0.956 1
Likal 0.998 $0.7/3$ 0.997^{*} 0.971 0.901 0.97^{*} 0.971 0.901 0.97^{*} 0.971 0.901^{*} 0.971 0.901^{*} 0.971 0.907^{*} 0.971 0.901^{*} 0.971 0.901^{*} 0.971 0.926 0.926 0.927 0.020 0.955 0.911 0.020 0.956 0.921 0.274 0.22 0.051 0.281 0.2520 0.520 0.520 0.520 0.520 0.520 0.520 0.520 0.651 0.235 0.0445 -0.445 -0.455 0.099 0.251 0.223 0.051 0.223 0.523 0.051 0.223 0.523 0.051 0.223 0.051 0.223 0.051 0.223 0.051 0.223 0.051 0.273 0.051 0.273 0.051 0.223 0.051 0.223 0.051 0.223 0.051 0.223 0.051 0.023 0.0261 0.0261	73 1 63 0.916 38 0.945 41 0.803 80 0.881 49 -0.106 14 -0.898 71 -0.962 54 0.330 52 0.103 94 -0.379 94 -0.379 95 0.103 86 0.657 95 0.111 06 0.095 86 0.657 95 0.408 sel (2-tailed); **	1 0.997 0.495 0.616 0.562 0.562 0.575 0.576 0.576 0.576 0.576 0.576 0.572 0.572 0.572 0.525 0.522 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.627 0.668 0.616 0.668 0.668 0.668 0.741 0.058 0.668 0.668 0.741 0.058 0.668 0.676 0.652 0.668 0.668 0.668 0.668 0.668 0.668 0.668 0.668 0.668 0.668 0.668 0.668 0.668 0.668 0.668 0.676 0.668 0.668 0.676 0.668 0.676 0.676 0.668 0.676 0.672 0.672 0.672 0.672 0.668 0.676 0.676 0.676 0.676 0.676 0.676 0.676 0.676 0.676 0.676 0.676 0.676 0.676 0.6680000000000	1 0.989 -0.679 -0.983 -0.983 -0.983 -0.517 0.676 -0.517 0.682 -0.517 0.078 -0.217 0.078	1 1	3 1 2 0.984 4 0.119)** -0.530 0 0.748 0 0.353 0 0.353 14 0.035 -0.258 -0.258 -0.258					3 1 8 0.956 1
DS 0.810 1.000 ^{**} 0.883 0.794 0.77 SS 0.977 0.916 0.997 ^{**} 0.971 0.96 OD 0.300 0.958 0.945 0.974 0.22 OD 0.300 0.803 0.445 0.24 0.2497 0.106 0.373 0.520 $0.550.497$ -0.106 0.373 0.520 0.5512 -0.469 -0.898 -0.586 -0.445 -0.4512 0.0621 0.0962 -0.722 -0.599 $-0.590.0516$ $0.0510.0235$ 0.0103 -0.376 0.261 $0.2610.2235$ -0.379 0.099 0.261 $0.2610.2261$ 0.0261 0.0261 $0.02610.974$ 0.657 0.934 0.980 $0.9870.0661$ 0.095 0.552 0.681 $0.7610.974$ 0.657 0.934 0.980 $0.970.909$ 0.0516 $-0.550.9704$ 0.572 0.681 0.733 $-0.5160.516$ $-0.550.552$ 0.681 0.733 -0.573 -0.573 $-0.5160.572$ -0.590 $0.9800.974$ 0.657 0.934 0.980 $0.9870.9080.9000$ -0.516 0.572 -0.552 0.681 0.7516 $-0.550.9700$ 0.9700 -0.516 0.572 -0.572 -0.516 $-0.57-0.500$ 0.979 0.0516 $-0.57-0.500$ 0.979 0.572 -0.572 -0.572 -0.516 $-0.57-0.5000 \pm -0.572 -0.572 -0.572 -0.572 \pm $	73 1 63 0.916 38 0.945 41 0.803 80 0.881 49 -0.106 14 -0.808 71 -0.962 54 0.330 52 0.103 94 -0.379 94 -0.379 94 -0.379 95 0.1011 06 0.095 86 0.657 95 0.4063 86 0.657 97 0.4095 86 0.657 97 0.4095 86 0.657 97 0.4095 86 0.657 97 0.4095 98 0.657 97 0.4095 86 0.657 97 0.4040 88 0.6403 98 0.657 98 0.6403 16 0.6403 17 10.4403 18 10.4403 <td>1 0.997 0.495 0.616 0.502 0.645 0.645 0.645 0.645 0.645 0.645 0.625 0.622 0.305 0.622 0.305 0.622 0.305 0.622 0.622 0.622 0.624 0.228 0.622 0.624 0.024 0.228 0.625 0.688 0.0417 0.688 0.0417 0.688 0.741 0.688</td> <td>1 0.989 -0.679 -0.933 -0.933 -0.934 -0.298 0.676 -0.517 0.682 -0.517 0.078 -0.217 0.078</td> <td>1 1</td> <td>3 1 2 0.984 4 0.119 0 0.748 0 0.748 0 0.353 0 0.353 1 0.035 -ailed)</td> <td></td> <td></td> <td></td> <td></td> <td>3 1 8 0.956 1</td>	1 0.997 0.495 0.616 0.502 0.645 0.645 0.645 0.645 0.645 0.645 0.625 0.622 0.305 0.622 0.305 0.622 0.305 0.622 0.622 0.622 0.624 0.228 0.622 0.624 0.024 0.228 0.625 0.688 0.0417 0.688 0.0417 0.688 0.741 0.688	1 0.989 -0.679 -0.933 -0.933 -0.934 -0.298 0.676 -0.517 0.682 -0.517 0.078 -0.217 0.078	1 1	3 1 2 0.984 4 0.119 0 0.748 0 0.748 0 0.353 0 0.353 1 0.035 -ailed)					3 1 8 0.956 1
SS 0.977 0.916 0.997 [*] 0.971 0.96 0. 0.958 0.945 0.988 0.950 0.950 0. 0.300 0.803 0.428 0.274 0.22 0. 0.497 -0.106 0.373 0.520 0.520 0.520 10. 0.497 -0.106 0.373 0.520 0.520 0.520 10. 0.469 -0.898 -0.586 -0.445 -0.45 10. 0.0821 0.330 0.735 0.836 0.836 0.85 10. 0.0821 0.330 0.735 0.836 0.85 10. 0.0500 0.103 -0.576 -0.599 -0.57 10. 0.0735 0.0336 0.0516 -0.55 10. 0.074 0.657 0.099 0.261 0.025 10. 0.074 0.657 0.934 0.980 0.98 10. 0.0740 0.661 0.0739 0.0819 0.0761 0.778 11. 0.074 0.657 0.934 0.980 0.98 12. 0.0561 0.0974 0.657 0.934 0.980 0.98 13. 0.0740 0.657 0.934 0.980 0.98 14. 12. 13. 14. 13. 14. 1	63 0.916 38 0.945 41 0.803 80 0.881 49 -0.106 14 -0.898 71 -0.962 54 0.330 52 0.103 94 -0.379 94 -0.379 94 -0.379 94 -0.379 95 0.408 86 0.657 95 0.408 86 0.657 86 0.657 86 0.657 87 95 0.409 87 95 0.409 88 0.657 95 0.409 88 0.657 95 0.409 88 0.657 95 0.409 88 0.657 95 0.409 88 0.657 95 0.409 88 0.657 88 0.657 95 0.409 88 0.657 88 0.657 95 0.4005 88 0.657 95 0.4005 88 0.657 88 0.657 88 0.657 88 0.657 88 0.657 88 0.657 87 0.457 88 0.657 88 0.657 80 0.557 80 0.5577 80 0.	1 0.997 0.616 0.616 0.616 0.645 0.676 0.645 0.675 0.772 0.645 0.772 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.647 0.666 0.666 0.666 0.666 0.666 0.666 0.666 0.666 0.666 0.666 0.666 0.676 0.666 0.672 0.672 0.622 0.0678 0.0688 0.0678 0.0678 0.0678 0.0688 0.0688 0.0678 0.0678 0.06888 0.06888 0.06888 0.06888 0.068880.06888 0.06888 0.06888 0.06888 0.068888 0.06888 0.068888 0.06888 0.068888 0.068888 0.068888 0.068888 0.068888 0.068888 0.068888 0.068888 0.068888 0.068888 0.068888 0.068888 0.068888 0.068888 0.068888 0.068888 0.068888 0.0688888 0.068888888888	1 0.989 -0.679 -0.934 -0.934 -0.934 -0.517 0.676 -0.517 0.078 -0.517 0.078	1 -0.565 -0.999* -0.976 -0.157 -0.157 0.900 0.562 -1.000 -0.773 0.968 0.568 -1.000 -0.388 0.988 0.221 0.221 0.221 0.268 -0.073 0.866 -0.773 0.866 -0.773 0.968 -0.773 0.968 -0.773 0.968 -0.773 0.968 -0.773 0.968 -0.773 0.968 -0.773 0.968 -0.773 0.968 -0.773 0.968 -0.773 0.968 -0.773 0.968 -0.773 0.968 -0.773 0.968 -0.773 0.968 -0.773 0.968 -0.773 0.966 -0.773 0.966 -0.773 0.966 -0.773 -0.900 -0.773 -0.900 -0.773 0.966 -0.773 -0.900 -0.773 0.900 -0.900 -0.773 0.900 -0.900 -0.773 0.900 -0.773 0.900 -0.9000 -0.9000 -0.900 -0.900 -0.90000 -0.9000 -0.9000 -0.9000 -0.90000 -0.9000 -0.90000 -0.90000 -0.90000 -0.90000 -0.90000 -0.90000 -0.90000 -0.90000 -0.90000 -0.90000 -0.90000 -0.90000000 -0.90000000000	3 1 2 0.984 4 0.119)** -0.530 0 0.748 0 0.748 0 0.353 1 0.035 -ailed)					3 1 8 0.956 1
0 0.958 0.945 0.988 0.950 0.92 0D 0.300 0.803 0.428 0.274 0.22 0D 0.300 0.803 0.435 0.881 0.555 0.411 0.032 0D 0.497 -0.106 0.373 0.520 0.520 0.520 0.520 0.520 0.520 0.520 0.520 0.520 0.520 0.520 0.520 0.520 0.520 0.520 0.520 0.520 0.529 0.651 0.024 0.024 0.0261 0.0261 0.0260 0.0261 0.0260 0.0261 0.0260 0.0261 0.0260 0.0261 0.0260 0.0260 0.0260 0.0260 0.0260 0.0260 0.0260 0.0260 0.0260 0.0260 0.0260 0.0260 0.0260 0.0260 0.0260 0.0260 0.0260 0.0260 0.0206 0.0206 0.0206 0.0206 0.0206 0.0206 0.0206 0.0206 0.0206 0.0206 0.0200 0.0206	38 0.945 41 0.803 80 0.881 49 0.106 14 0.803 71 0.962 71 -0.962 72 0.330 54 0.330 54 0.330 55 0.103 94 -0.379 94 -0.379 94 -0.379 95 0.408 96 0.657 95 0.408 91<(2-tailed); **.	0.997 1 0.495 0.562 0.616 0.676 0.302 0.676 0.645 -0.703 0.682 0.622 0.305 -0.230 0.024 -0.054 0.298 -0.223 0.487 0.417 0.905 0.868 0.741 0.685 0.741 0.685	1 0.989 -0.679 -0.934 -0.934 -0.934 -0.517 0.676 -0.517 0.078 -0.517 0.078 -0.217 0.078	1 -0.565 -0.565 -0.90 ⁶ -0.157 -0.157 0.906 0.562 -1.000 -0.773 0.966 0.221 0.688 0.286 0.221 0.680 0.261 0.680 0.866 0.201 0.866	3 1 2 0.984 4 0.119)** -0.530 0 0.748 0 0.748 0 0.353 0 -0.258 1 0.035 -tailed)					3 1 8 0.956 1
OD 0.300 0.803 0.428 0.274 0.22 OD 0.300 0.803 0.428 0.274 0.20 Ig 0.497 -0.106 0.373 0.555 0.411 0.38 Ig 0.497 -0.106 0.373 0.520 0.509 0.52 e 0.821 0.333 0.735 0.836 0.445 -0.49 u -0.6200 0.103 0.735 0.836 0.261 0.253 -0.533 0.516 0.253 u -0.500 0.111 -0.369 0.261 0.293 0.051 0.293 i 0.2661 0.095 0.552 0.681 0.70 i 0.266 0.448 0.789 0.789 0.780 0.980	41 0.803 41 0.803 80 0.881 49 -0.106 14 -0.898 71 -0.962 54 0.330 52 0.103 94 -0.379 94 -0.379 95 0.408 86 0.657 95 0.408 95 0.408 95 0.408 1(2-tailed); **: resh/dry bioma trol	0.295 0.562 0.495 0.562 0.616 0.676 0.645 -0.703 0.772 -0.820 0.682 0.622 0.305 -0.230 0.024 -0.054 0.028 -0.223 0.487 0.417 0.905 0.868 0.741 0.685 0.741 0.685	1 0.989 -0.679 -0.983 -0.934 -0.934 -0.298 0.676 -0.857 0.682 -0.517 0.078 -0.217 2016ant at at	1 -0.565 -0.999* -0.976 -0.377 -0.157 0.906 0.562 -1.000 -0.773 0.966 0.588 -0.988 0.221 0.688 0.221 0.688 0.866 -0.773 0.668 0.221 0.688 0.866 -0.773 0.668 0.221 0.688 0.866 -0.773 0.688 0.866 -0.773 0.866 -0.786 -0.866 -0.866 -0.773 0.866 -0.866	3 1 2 0.984 4 0.119)** -0.530 0 0.748 0 0.748 0 0.353 0 -0.258 1 0.035 -ailed)					3 1 8 0.956 1
OD 0.300 0.803 0.428 0.274 0.22 OD 0.497 -0.106 0.373 0.520 0.55 Ig -0.469 -0.898 0.586 -0.445 -0.35 a -0.620 -0.962 -0.722 -0.599 -0.55 a -0.620 -0.962 -0.732 0.85 -0.881 0.253 b 0.235 -0.379 0.099 0.261 0.253 -0.533 b 0.235 -0.3111 -0.369 0.2516 0.253 -0.516 0.253 b 0.235 -0.3111 -0.369 0.261 0.293 0.716 0.72 s 0.661 0.095 0.552 0.681 0.76 i 0.974 0.657 0.934 0.980 0.980 d 0.866 0.408 0.778 0.778 0.778 i 0.974 0.657 0.934 0.980 0.980 d 0.9866 $0.$	41 0.803 80 0.881 49 -0.106 14 -0.898 71 -0.962 54 0.330 52 0.103 94 -0.379 45 0.111 45 0.111 86 0.657 86 0.657 86 0.657 95 0.408 51 (2-tailed); ** 12 (2-tailed); ** 12 (2-tailed); **	0.495 0.562 0.616 0.676 0.302 0.226 0.645 -0.703 0.772 -0.820 0.682 0.622 0.305 -0.230 0.024 -0.054 0.0298 -0.230 0.0298 -0.222 0.417 0.905 0.868 0.741 0.685 0.741 0.688	1 0.989 -0.679 -0.933 -0.934 -0.298 0.676 -0.517 0.682 -0.517 0.078 -0.217 20178 -0.217 20178 -0.217	1 -0.565 -0.565 -0.990* -0.976 -0.377 -0.157 0.906 0.568 -1.000 -0.773 0.966 0.221 0.868 0.288 0.988 0.988 0.221 0.686 0.201 0.686 0.201 0.686 0.201 0.686 0.201 0.686 0.201 0.686 0.201 0.686 0.201 0.686 0.201 0.686 0.201 0.686 0.201 0.686 0.201 0.686 0.201 0.686 0.201 0.201 0.686 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.202 0.202 0.202 0.202 0.202 0.202 0.202 0.202 0.202 0.202 0.200 0.202 0.20	3 1 2 0.984 4 0.119)** -0.530 0 0.748 0 0.353 0 0.353 14 0.035 -ailed)					3 1 8 0.956 1
OD 0.435 0.881 0.555 0.411 0.38 e 0.497 -0.106 0.373 0.520 0.52 e -0.620 -0.962 -0.722 -0.599 -0.559 e -0.620 -0.962 -0.735 0.836 -0.836 e 0.821 0.330 0.735 0.836 0.82 e 0.821 0.330 0.735 0.836 0.82 e 0.235 0.376 0.523 -0.53 0.521 0.253 e 0.235 0.3111 -0.369 0.261 0.253 e 0.235 0.1111 -0.369 0.516 0.76 e 0.661 0.095 0.572 0.870 0.980 e 0.948 0.778 0.780 0.980 0.980 e 0.661 0.095 0.572 0.872 0.872 0.872 $0.$	80 0.881 49 -0.106 14 -0.898 54 0.330 52 0.103 94 -0.379 94 -0.379 95 0.111 06 0.095 86 0.657 95 0.408 86 0.657 95 0.408 sel (2-tailed); ** croldry bioma	0.616 0.676 0.302 0.576 0.645 -0.703 0.772 -0.820 0.682 0.622 0.305 -0.230 0.305 -0.230 0.682 0.622 0.487 0.417 0.905 0.868 0.741 0.688 0.741 0.688	0.989 -0.679 -0.983 -0.934 -0.298 0.676 -0.857 0.682 -0.517 0.078 -0.217 mificant at	1 -0.565 1 -0.999* 0.533 -0.976 0.377 -0.157 0.906 0.562 -1.000 0.568 -1.000 0.568 0.968 0.221 0.688 0.221 0.681 0.221 0.681 0.221 0.681	3 1 2 0.984 4 0.119)** -0.530 0 0.748)** -0.537 0 0.353 0 -0.258 4 0.035 -tailed)					3 1 8 0.956 1
[g -0.497 - 0.106 0.373 0.520 0.536 0.445 -0.4 a -0.620 -0.962 -0.732 0.599 -0.5 a -0.620 -0.962 -0.732 0.836 0.836 0.65 a -0.620 0.103 -0.379 0.330 0.735 0.836 0.836 a -0.500 0.103 -0.379 0.099 0.523 -0.553 -0.553 -0.553 -0.553 -0.553 -0.553 -0.553 -0.553 -0.553 -0.553 -0.553 -0.553 -0.553 -0.553 -0.556 -0.556 -0.556 -0.556 -0.556 -0.556 -0.556 -0.556 -0.556 -0.566 -0.566 -0.566 -0.566 -0.566 -0.566 -0.566 -0.566 -0.566 -0.566 -0.566 -0.566 -0.566 -0.566 -0.566 -0.566 -0.566 -0.560 -0.560 -0.566 -0.566	49 -0.106 14 -0.898 71 -0.962 54 0.330 52 0.103 94 -0.379 95 0.111 06 0.095 86 0.657 95 0.4013 95 0.4013 11 -0.379 12 -0.379 13 -0.379 14 -0.379 15 -0.411 16 -1.037 17 -0.411 18 -0.411 19 -0.409 10 -0.657 11 -0.409 12 -1.414 13 -0.409 14 -0.409 15 -1.414 16 -1.414 17 -1.414 18 -1.414 19 -1.414 10 -1.414 11 -1.414 12 -1.414 14 -1.414 15	0.302 0.226 0.645 -0.703 0.772 -0.820 0.682 0.622 0.305 -0.230 0.024 -0.054 0.298 -0.230 0.024 -0.054 0.205 0.868 0.741 0.685 0.741 0.685	-0.679 -0.983 -0.983 -0.298 0.676 -0.298 0.676 -0.517 0.078 -0.517 0.078	-0.565 1 -0.999* 0.533 -0.976 0.375 -0.157 0.906 0.562 -1.000 0.568 -1.000 0.568 -1.000 0.568 -1.000 0.231 0.966 0.221 0.688 -0.073 0.864 -0.073 0.864 -0.073 0.864 -0.073 0.864 -0.073 0.864	3 1 2 0.984 4 0.119)** -0.530 0 0.748)** -0.537 0 0.353 0 -0.258 4 0.035 -tailed)					3 1 8 0.956 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14 -0.898 71 -0.962 54 0.330 52 0.103 94 -0.379 95 0.111 06 0.095 86 0.657 95 0.4063 95 0.40163 97 0.4055 97 0.4055 96 0.657 97 0.4013 96 0.657 97 0.4013 91 (2-tailed); ** 1 (2-tailed); text 1 trol	0.645 -0.703 0.772 -0.820 0.682 0.622 0.305 -0.230 0.024 -0.054 0.298 -0.223 0.2487 0.417 0.487 0.417 0.487 0.417 0.487 0.417	-0.983 -0.934 -0.298 0.676 -0.857 0.682 -0.517 0.078 -0.217 _0.078	-0.999* 0.53 -0.976 0.375 -0.157 0.907 0.562 -1.000 -0.773 0.968 0.568 -1.000 0.568 -1.000 0.568 -1.000 0.388 0.986 0.388 0.986 0.073 0.864 0.073 0.864 0.073 0.864 0.073 0.864 0.071 10.06	3 1 2 0.984 4 0.119)** 0.530 0 0.748)** -0.537 0 0.353 0 0.353 1 0.035 -tailed)					3 1 8 0.956 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	71 -0.052 54 0.330 52 0.103 94 -0.379 95 0.111 06 0.095 86 0.657 95 0.409 12-tailed); ** esh/dry bioma trol	0.772 -0.820 0.682 0.622 0.305 -0.522 0.024 -0.054 0.028 -0.254 0.487 0.417 0.487 0.417 0.905 0.868 0.741 0.685	-0.934 -0.934 -0.298 0.676 -0.857 0.682 -0.517 0.078 -0.217 -0.217 smificant at	-0.976 0.377 -0.157 0.900 0.562 -1.000 -0.773 0.966 0.568 -1.000 -0.388 0.986 -0.388 0.981 -0.073 0.6681 -0.073 0.6681 -0.073 0.6681 -0.073 0.2681	0.0584 0.119 0.0530 0.0748 0.0537 0.0537 0.0537 0.0558 0.0558 0.0258 1.0035 -tailed)					3 1 8 0.956 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	71 -0.902 54 0.330 52 0.103 - 94 -0.379 45 0.111 - 06 0.095 86 0.657 95 0.408 95 0.408 95 0.408 resh/dry bioma trol	0.712 -0.520 0.682 0.622 0.305 -0.230 0.024 -0.054 0.298 -0.222 0.487 0.417 0.905 0.868 0.741 0.685 0.741 0.685	-0.298 -0.298 -0.676 -0.857 -0.857 0.682 -0.517 0.078 -0.217 gnificant at	-0.572 0.502 -0.157 0.902 -0.773 0.966 -0.773 0.966 -0.388 0.986 -0.388 0.986 -0.073 0.866 -0.073 0.865 -0.073 0.865	2 0.984 4 0.119 0 0.748 0 0.748 0 0.353 0 0.353 0 -0.258 1 0.035 -tailed)					3 1 8 0.956 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	54 0.330 52 0.103 94 -0.379 45 0.111 06 0.095 86 0.657 95 0.408 95 0.408 12-tailed); ** esh/dry bioma trol	0.682 0.622 0.305 -0.230 0.024 -0.054 0.298 -0.222 0.487 0.417 0.905 0.868 0.741 0.685 O.741 0.685	-0.298 0.676 -0.857 0.682 -0.517 0.078 -0.217 spificant at	-0.157 0.902 0.562 -1.000 -0.773 0.96(0.568 -1.000 -0.388 0.98(0.221 0.68(0.221 0.68(-0.073 0.865 -0.073 0.865 -0.073 0.865	4 0.119)** -0.530 0 0.748)** -0.537 0 0.353 0 -0.258 4 0.035 -tailed)					3 1 8 0.956 1
u -0.500 0.103 -0.533 -0.537 0.023 -0.537 0.025 n -0.493 0.111 -0.369 0.261 0.25 s 0.661 0.095 0.552 0.681 0.70 s 0.666 0.408 0.789 0.980 0.98 ey note: *. Correlation is significant at the 0.05 leve 0.879 0.85 ey note: *. Correlation is significant at the 0.05 leve 0.760 0.872 evalueters 0.780 0.872 0.057 arameters 0.01 length (cm) $3.672 \pm$ $53.333 \pm$ coot Length (cm) $3.672 \pm$ $5.3.33 \pm$ $5.000 \pm$ toot Length (cm) $2.900 \pm$ $53.333 \pm$ $5.000 \pm$ toot Length (cm) $2.900 \pm$ $5.3.333 \pm$ $5.000 \pm$ toot Dry Bi	52 0.103 94 -0.379 95 0.111 06 0.095 86 0.657 95 0.408 95 0.408 1(2-tailed); *** resh/dry bioma trol	0.305 -0.230 0.024 -0.054 0.298 -0.222 0.487 0.417 0.905 0.868 0.741 0.685 O.741 0.685	0.676 -0.857 0.682 -0.517 0.078 -0.217 -0.217 spificant at	0.562 -1.000 -0.773 0.96(0.568 -1.000 -0.388 0.98(0.221 0.688 -0.073 0.86- the 0.01 level (2-)** -0.530 0 0.748)** -0.537 0 0.353 0 -0.258 4 0.035 -ailed)					3 1 8 0.956 1
0 0.235 -0.379 0.099 0.261 0.25 1 -0.493 0.111 -0.369 -0.516 -0.5 1 0.9661 0.095 0.552 0.681 0.70 1 0.974 0.657 0.934 0.980 0.98 1 0.866 0.408 0.789 0.879 0.86 1 0.866 0.408 0.789 0.879 0.89 ey note: *. Correlation is significant at the 0.05 leve 0.879 0.85 ey note: *. Correlation is significant at the 0.05 leve 0.872 0.872 ey note: *. Correlation is significant at the 0.05 leve 0.051 0.85 eventination (%) 53.333 2 2 dermination (%) 53.333 2 2 2 doot Length (cm) 2.900 2 2 2 2 2 toot Length (cm) 2.900 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	94 -0.379 45 0.111 06 0.095 86 0.657 95 0.408 el (2-tailed); ** resh/dry bioma trol	0.024 -0.054 0.298 -0.222 0.487 0.417 0.905 0.868 0.741 0.685 Orrelation is si	-0.857 0.682 -0.517 0.078 -0.217 -0.217 gnificant at	-0.773 0.96(0.568 -1.000 -0.388 0.98(0.221 0.68(0.221 0.68(-0.073 0.86(the 0.01 level (2-	0 0.748)** -0.537 0 0.353 0 -0.258 4 0.035 -tailed)					3 1 8 0.956 1
1 -0.493 0.111 -0.369 -0.516 -0.55 1 0.661 0.095 0.552 0.681 0.70 1 0.974 0.657 0.934 0.980 0.98 1 0.866 0.408 0.789 0.879 0.892 ey note: *. Correlation is significant at the 0.05 leve eynote: *. Correlation is significant at the 0.05 leve eynote: *. Correlation is significant at the 0.05 leve eynote: *. Correlation is significant at the 0.05 leve eynote: *. Correlation is significant at the 0.05 leve eventers Cont Table 4. Seed germination with length and fr arrameters Cont arrameters Cont toot Length (cm) $3.672 \pm$ toot Length (cm) $3.672 \pm$ toot Length (cm) $3.600 \pm$ toot Tresh Biomass (g) $0.004 \pm$ toot Dry Biomass (g) $0.004 \pm$	45 0.111 06 0.095 86 0.657 95 0.408 el (2-tailed); ** resh/dry bioma trol	0.298 -0.292 0.487 0.417 0.905 0.868 0.741 0.685 Orrelation is si	0.682 -0.517 0.078 -0.217 gnificant at	0.568 -1.000 -0.388 0.98(-0.388 0.98(0.221 0.68(-0.073 0.86(the 0.01 level (2-)** -0.537 0 0.353 0 -0.258 4 0.035 -tailed)					3 1 8 0.956 1
a 0.661 0.095 0.552 0.681 0.70 a 0.974 0.657 0.934 0.980 0.98 a 0.9661 0.657 0.934 0.800 0.98 available 0.667 0.2408 0.789 0.879 0.89 0.98 available 0.866 0.408 0.789 0.879 0.879 0.879 0.879 0.879 0.879 0.879 0.833 0.980 0.981 0.981 0.872 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.072 0.0204 0.0000 0.0004 0.0004 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.6 0.095 86 0.657 95 0.408 81 (2-tailed); **. resh/dry bioma trol	0.487 0.417 0.905 0.868 0.741 0.685 Correlation is si	-0.517 -0.517 -0.217 prificant at	-0.388 0.980 0.221 0.680 -0.073 0.864 the 0.01 level (2-	0 0.353 0 -0.258 4 0.035 tailed)					3 1 8 0.956 1
i 0.974 0.657 0.934 0.980 0.98 i 0.866 0.408 0.789 0.879 0.89 ey note: *. Correlation is significant at the 0.05 leve Table 4. Seed germination with length and fr arameters Cont esculentus $53.333 \pm 5072 \pm 1000$ esculentus $53.333 \pm 5072 \pm 1000$ esculentus $53.333 \pm 500 \pm 1000$ esculentus $53.333 \pm 500 \pm 1000$ esculentus $53.333 \pm 500 \pm 1000 \pm 1000$ esculentus 0.0054 ± 1000 esculentus 0.0054 ± 1000	86 0.657 95 0.408 el (2-tailed); **. resh/dry bioma trol	0.905 0.868 0.741 0.685 Correlation is si	0.078 0.078 -0.217 prificant at	-0.073 0.864 the 0.01 level (2-	0 -0.258 4 0.035 -tailed)				r -	3 1 8 0.956 1
I 0.974 0.605 0.408 0.789 0.872 0.872 0.872 0.872 0.872 0.011 Table 4. Seed germination (%) $tesculentus$ $tesculentus$ 53.333 $tesculentus$ 53.333 $tesculentus$ t	80 0.637 95 0.408 el (2-tailed); **. resh/dry bioma trol	0.741 0.685 0.741 0.685 Correlation is sig	0.0/8 -0.217 gnificant at	0.221 0.08(-0.073 0.86/ the 0.01 level (2-	0 -0.258 4 0.035 -tailed)					5 1 8 0.956 1 control)
1 0.866 0.408 0.789 0.879 0.087 ey note: *. Correlation is significant at the 0.05 leveTable 4. Seed germination with length and frarametersContarameters 0.789 0.879 0.879 . esculentus $53.333 \pm$. esculentus $53.333 \pm$. oot Length (cm) $3.672 \pm$ hoot Length (cm) $2.900 \pm$. oot Length (cm) $2.900 \pm$. oot Presh Biomass (g) $0.004 \pm$ hoot Fresh Biomass (g) $0.206 \pm$	95 0.408 el (2-tailed); **. resh/dry bioma trol	0.741 0.685 Correlation is si _v	-0.217 gnificant at	-0.073 0.862 the 0.01 level (2-	4 0.035 -tailed)			·		8 0.956 1 control)
by note: *. Correlation is significant at the 0.05 leve Table 4. Seed germination with length and fr arameters Cont <i>arameters</i> 53.333 \pm <i>esculentus</i> 53.333 \pm <i>iermination</i> (%) 53.333 \pm <i>iermination</i> (%) 53.37 \pm <i>iermination</i> (%) 53.333 \pm <i>iermination</i> (%) 53.33 \pm <i>iermination</i> (%) 0.004 \pm <i>hoot</i> Length (cm) 2.900 \pm <i>iermination</i> (g) 0.004 \pm <i>hoot</i> Fresh Biomass (g) 0.004 \pm <i>hoot</i> Fresh Biomass (g) 0.206 \pm <i>hoot</i> Dry Biomass (g) 0.206 \pm	el (2-tailed); **. resh/dry bioma trol	Correlation is si	gnificant at	the 0.01 level (2-	-tailed)					control)
Table 4. Seed germination with rengin and reaction $(\%)$ arametersContarameters $(3.33 \pm 1)^{-1}$ ermination (%) $(3.572 \pm 1)^{-1}$ boot Length (cm) $(3.672 \pm 1)^{-1}$ boot Length (cm) $(0.054 \pm 1)^{-1}$ coot Fresh Biomass (g) $(0.004 \pm 1)^{-1}$ boot Fresh Biomass (g) $(0.206 \pm 1)^{-1}$	resn/ary pioma trol		-				-		1 - 1	Control
() (8)	trol		4.7 allu F. V	escarentas and r. vagarts under the applications of various wastewaters as compared to tap water (control).	e application	IS OF VALIOUS	s wastewa	ters as compart	u uu tap water	
(බ්		DWW		IWW	TV	LWW	Mi	Mix Water	F-value	Sig.(P)
(බ්										
((g	± 6.667	73.333 ± 6.667		26.667 ± 6.667	80.000	80.000 ± 11.547	53.33	53.333 ± 17.638	3.769	0.040^{**}
((3)	0 306	4 777 + 0 705		0.850 ± 0.650	6 033	9033 ± 0.260	37 F	3708 ± 0542	17 833	0 001***
((g				0000 - 0000					000.21	100'0
((g	166.0	$CCC.U \pm UC2.0$		2.000 ± 1.000	/.10/	$CC8.0 \pm 101.1$	4.81	4.815 ± 0.088	10.002	0.003***
g)	0.008	0.038 ± 0.002		0.011 ± 0.004	0.052	0.052 ± 0.009	0.03	0.030 ± 0.004	5.632	0.019^{**}
g)	0.000	0.003 ± 0.000		0.001 ± 0.000	0.004	0.004 ± 0.000	0.00	0.003 ± 0.000	6.638	0.012^{**}
ò	0.002	0.274 ± 0.007		0.156 ± 0.012	0.271	0.271 ± 0.009	0.20	0.201 ± 0.007	39.658	0.000^{***}
	0.030 + 0.000	0.019 + 0.002		0.023 ± 0.000	0.022	0.022 + 0.002	0.02	0.023 + 0.001	9.587	0,004***
										• • •
Germination (%) 73 33 + 6 66	+ 6.66	<u> 93 33 + 6 66</u>		53.33 + 6.66	86.67	86.67 + 6.66	99	9994 - 699	5,700	0.012**
	- 2000 + 7 176	13556 ± 7810		$4 130 \pm 0155$	13 033	13 033 + 0 301	3C L	7.250 ± 1.250	5 301	0.017**
	1 222	0 770 - 0 004		-120 - 0210	CC0.CT	1/2.0 = 0.001	20.4	5000 + 1000	10.065	×**C000
	CCC.I	0.110 ± 0.074		07C'0 I 6CT.	10.01	H.242	7.00		000.01	
g)	0.022	0.201 ± 0.011		0.064 ± 0.007	0.215	0.215 ± 0.034	0.08	0.085 ± 0.027	9.555	0.003^{***}
Root Dry Biomass (g) 0.020 ± 0.003	0.003	0.026 ± 0.005		0.012 ± 0.000	0.020	0.020 ± 0.002	0.01	0.011 ± 0.001	4.240	0.034^{**}
Shoot Fresh Biomass (g) 1.073 ± 0.082	0.082	1.406 ± 0.068		0.858 ± 0.031	1.349	1.349 ± 0.215	0.98	0.984 ± 0.090	3.935	0.041^{**}
Shoot Dry Biomass (g) 0.264 ± 0.016	0.016	0.255 ± 0.019		0.255 ± 0.010	0.171	0.171 ± 0.030	0.27	0.276 ± 0.022	4.194	0.035^{**}

In this study higher concentration of arsenic was detected in DWW and IWW but according to NEQS limit it was under the permissible limit. While in LWW, As perceived under the permissible limit of WHO and NEQS. According to Akhtar & Shoaib (2014), increased amount of arsenic reduce the seedling growth and biomass of *Triticum aestivum* L. when it accumulate in plant tissues. Some other prior studies in Pakistan also reported accumulation of heavy metals in plant body by irrigation of wastewater (Jan *et al.*, 2010; Khan *et al.*, 2010).

Certain elements are essential like zinc, copper, iron, nickel, manganese etc. in very little amount as they work for plant growth like mineral nutrients. But function of others such as lead and cadmium is unknown in plant body (Lasat, 2002). So, the unnecessary extents of elements become toxic for growth of plant (Prodgers & Inskeep, 1991).

Essential elements are the macro nutrients which are necessary for the plant growth. The body of plant uptakes these nutrients from soil through its roots. Plant growth faces problems when soil is deficient in having essential nutrients. In this study it is also revealed that wastewater contains sufficient amount of essential nutrients for plant growth such as potassium, magnesium and calcium. Correspondingly, various researchers have also been reported that wastewater comprises higher amounts of macro nutrients i.e. potassium, magnesium, calcium, nitrogen and phosphorus (Barton *et al.*, 2005; Fonseca *et al.*, 2007; Sophocleous *et al.*, 2009; Jaiswal & Elliott, 2011) as well as micro nutrients like zinc, iron, manganese, copper, nickel etc. (Pedrero & Alarcón, 2009; Xu *et al.*, 2010).

Among all types of wastewaters, DWW found to have higher quantities of K, Mg and Ca as compared with IWW and LWW. Moraetis *et al.*, (2011) found 50 times greater amount of K in wastewater of Oil Mill as compared to the ground water. According to Morgan *et al.*, (2008), after irrigation with wastewater citrus plant found to have increased amount of Mg in the body. Similar results were also reported by Pedrero & Alarcón (2009). In IWW, greater amount of K and Mg was present than LWW while Ca was found in order as DWW > LWW > IWW. Though, Pereira *et al.*, (2011) reported increased concentration of Ca in the soil extending to 90 cm in the depth.

Prior studies in various other countries like Egypt, Greece, Israel, Italy, Jordan, Spain and USA proved beneficial influences of wastewater in the field of agriculture for irrigation of crop as an alternative source of fresh water (Aucejo *et al.*, 1997; Omran *et al.*, 1988; Meli *et al.*, 2002; Graber *et al.*, 2006; Ammary, 2007; Morgan *et al.*, 2008; Kalavrouziotis *et al.*, 2009; Pedrero & Alarcón, 2009, Pedrero *et al.*, 2010). Although, few studies observed nutrient ailments in plants through continuous irrigation with wastewater (Fatta-Kassinos *et al.*, 2011). For evading these ailments, potential of nutrients in soil-water should be examine according to the requirement of plant growth.

Due to permissible limit of pH (WHO, 2006) and other nutrients availability, DWW and LWW significantly influence on the seed germination and plant length of both

crops (A. esculentus and P. vulgaris) as shown in table 4. According to Bazai & Achakzai (2006), wastewater from Quetta city, Pakistan, enhanced the germination and growth of Lactuca sativa with its initial measures, but the higher concentration of wastewater considerably reduced the length of plumule as compared to control. In present study, it was also observed that IWW and mix water with higher concentrations of physiochemical measures and metals like As, Cd etc. negatively impact on seed germination and growth parameters of both crops. Similarly, Dash (2012) observed that DWW increased the germination of Oryza sativa and Triticum aestivum cultivars upto its 50% concentration but the seed germination found delayed in higher concentrations of wastewater. The higher rate of salinity in water causes toxicity of high osmotic pressure due to which seeds became unable to take water that leads to decrease in the germination percentage. Correspondingly, in present study, higher levels of salinity and other parameters in IWW reduced the germination percentage and growth parameters of both crops A. esculentus and P. vulgaris. Khan et al., (2011) also reported that textile wastewater with increased concentrations ultimately decreased the germination of seeds. Same findings have been observed by Nagda et al., (2006) with the application of industrial effluent on the seed germination. Though, according to Ungar (1978), germination of seeds depends on their ability to germinate under high osmotic pressure that varies with species and its variety. In such a manner, Tan et al., (1979) also described by his findings that different varieties of crops showed diverse impacts on their germination and growth parameters by the applications of altered types of wastewaters.

Various researchers stated that wastes from industries and domestics contain varieties of heavy metals like Cu, Fe, Mn, Ni, Pb, Zn as well as essential nutrients for plants (Akbar et al., 2007; Amin et al., 2009; Umebese et al., 2009). These nutrients in wastewaters are necessary for the growth of plants but the higher concentrations of heavy metals in water compete with nutrients to uptake by roots that eventually cause reduction in the growth of plant. Respectively, Cheng & Zhou (2002) found reduced length of roots in T. aestivum due to heavy metals and toxic chemicals. In this study, it also have been proved that IWW and mix water contained higher concentrations of physiochemical measures and heavy metals that adversely influence on growth of both crops. Anyhow, different varieties of plants showed altered response by different wastewaters (Rosa et al., 1999).

Conclusion

In the present study, it is evaluated that DWW and LWW had adequate amount of essential nutrients and permissible limit of pH that significantly exhibited positive influence on the germination and growth parameters of *A. esculentus* and *P. vulgaris*. Whereas, IWW contained higher measures of physio-chemical parameters and metals that lead to the negative impact on both crops. Thus, it depends on the quality of wastewater which influence on the growth of plant as well as variety of crop that tolerate the properties of applied wastewater.

References

- Abaidoo, R.C., B. Keraita, P. Drechsel, P. Dissanayake and A.S. Maxwell. 2010. Soil and crop contamination through wastewater irrigation and options for risk reduction in developing countries. In Soil biology and agriculture in the tropics, Springer, Berlin, Heidelberg, pp. 275-297.
- Adriano, D.C. 1986. Trace elements in the terrestrial environment. Springer-Verlag New York Inc, pp. 390-420.
- Akbar, F., F. Hadi, Z. Ullah and M.A. Zia. 2007. Effect of marble industry effluent on seed germination, post germinative growth and productivity of *Zea mays L. Pak. J. Biol. Sci.*, 10: 4148-4151.
- Akhtar, S. and A. Shoaib. 2014. Toxic effect of arsenate on germination, early growth and bioaccumulation in wheat (*Triticum aestivum L.*). *Pak. J. Agr. Sci.*, 51(2): 389-394.
- Amin, A.W., F.K. Sherif, H. El-Atar and H. Ez-Eldin. 2009. Residual effect of sewage sludge on soil and several yield parameters of *Zea mays. Res. J. Environ. Toxicol.*, 3: 86-93.
- Ammary, B.Y. 2007. Wastewater reuse in Jordan: Present status and future plans. *Desalination*, 211: 164-176.
- Anonymous. 1998. Standards Methods for the examination of water and wastewater. 20th edition, American Public Health Association, Washington, D.C.
- Anonymous. 1999. International rules for seed testing. Seed Sci. Technol., 21: 288.
- Anonymous. 2000. National Environmental Quality Standards for municipal and liquid industrial effluents.
- Antil, R.S. 2012. Impact of sewage and industrial effluents on soil-plant health. Industrial waste. Intech Publication, Rijeka. 53-72.
- Aucejo, A., J. Ferrer, C. Gabaldón, P. Marzal and A. Seco. 1997. Diagnosis of boron, fluorine, lead, nickel and zinc toxicity in citrus plantations in Villarreal, Spain. *Water Air Soil Pollut.*, 94: 349-360.
- Barbagallo, S., A.C. Barbera, G.L. Cirelli, M. Milani and A. Toscano. 2014. Reuse of constructed wetland effluents for irrigation of energy crops. *Water Sci. Tech.*, 70: 1465-1472.
- Barton, L., L.A. Schipper, G.F. Barkle, M. McLeod, T.W. Speir, M.D. Taylor, A.C. McGill, A.P. van Schaik, N.B. Fitzgerald and S.P. Pandey. 2005. Land application of domestic effluent onto four soil types. J. Environ. Qual., 34: 635-643.
- Bazai, Z.A. and A.K.K. Achakzai. 2006. Effect of wastewater from Quetta city on germination and seedling growth of lettuce (*Lactuca sativa* L.). J. Appl. Sci., 6: 380-382.
- Brar, M.S., S.S. Malhi, A.P. Singh, C.L. Arora and K.S. Gill. 2000. Sewage water irrigation effects on some potentially toxic trace elements in soil and potato plants in northwestern India. *Can. J. Soil Sci.*, 80: 465-471.
- Cheng, Y. and Q.X. Zhou. 2002. Ecological toxicity of reactive X-3B red dye and cadmium acting on wheat (*Triticum aestivum*). J. Environ. Sci., 14: 136-140.
- Das, M., M.K. Ahmed, M.M. Islam, M.S. Akter, M.S. Islam and M. Mansur. 2010. Heavy metal concentrations in industrial effluents (Tannery and Textile) and water of adjacent river. *Terr. Aquat. Environ. Toxicol.*, 4: 8-13.
- Dash, A.K. 2012. Impact of domestic waste water on seed germination and physiological parameters of rice and wheat. *Int. J. Res. Rev. Appl. Sci.*, 12: 280-286.
- Divyapriya, S., D. Dimi and K.P. Deepthi. 2014. Biochemical effect of industrial effluence on germinating seeds of *Cicer* arientum. Int. J. Pharm. Pharm. Sci., 6: 538-542.
- Farooqi, Z.R., M.Z. Iqbal, M. Kabir and M. Shafiq. 2009. Toxic effects of lead and cadmium on germination and seedling growth of *Albizia lebbeck* (L.) Benth. *Pak. J. Bot.*, 41: 27-33.
- Fatta-Kassinos, D., I.K. Kalavrouziotis, P.H. Koukoulakis and M.I. Vasquez. 2011. The risks associated with wastewater reuse and xenobiotics in the agroecological environment. *Sci. Total Environ.*, 409: 3555-3563.

- Feigin, A., E. Pressman, P. Imas and O. Miltau. 1991. Combined effects of KNO₃ and salinity on yield and chemical composition of lettuce and Chinese cabbage. *Irrigat. Sci.*, 12(4): 223-230.
- Fernandez-Leborans, G. and Y.O. Herrero. 2000. Toxicity and bioaccumulation of lead and cadmium in marine protozoan communities. *Ecotoxicol. Environ. Safety*, 47: 266-276.
- Fonseca, A.F., A.J. Melfi, F.A. Monteiro, C.R. Montes, V.V. de Almeida and U. Herpin. 2007. Treated sewage effluent as a source of water and nitrogen for Tifton 85 bermudagrass. *Agri. Water Manage.*, 87: 328-336.
- Gardea-Torresdey, J.L., J.R. Peralta-Videa, G. De La Rosa and J.G. Parsons. 2005. Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. *Coordin. Chem. Rev.*, 249: 1797-1810.
- Ghafoor, A., M. Qadir, M. Sadiq, G. Murtaza and M.S. Brar. 2004. Lead, copper, zinc and iron concentrations in soils and vegetables irrigated with city effluent on urban agricultural lands. *J. Ind. Soc. Soil Sci.*, 52: 114-117.
- Gowrisankar, R., R. Pataniappan and S. Ponpandi. 1997. Microbiota of textile mill effluent, treatment and effect of treated effluent on plant growth. J. Ind. Pollut. Contr., 13: 61-65.
- Graber, E.R., O. Ben-Arie and R. Wallach. 2006. Effect of sample disturbance on soil water repellency determination in sandy soils. *Geoderma.*, 136: 11-19.
- Gupta, A.P., R.P. Narwal and R.S. Antil. 1998. Sewer water composition and its effect on soil properties. *Biores. Technol.*, 65: 171-173.
- Gupta, I.C. and B.L. Jain. 1992. Salinisation and Alkalisation of ground water pollution due to Textile hand processing Industries in Pali. *Curr. Agr.*, 16: 59-62.
- Haddaoui, I., O. Mahjoub, B. Mahjoub, A. Boujelben and G. Di Bella. 2016. Occurrence and distribution of PAHs, PCBs, and chlorinated pesticides in Tunisian soil irrigated with treated wastewater. *Chemosphere*, 146: 195-205.
- Hamilton, A.J., F. Stagnitti, R. Premier, A.M. Boland and G. Hale. 2006. Quantitative microbial risk assessment models for consumption of raw vegetables irrigated with reclaimed water. *Appl. Environ. Microbiol.*, 7: 3284-3290.
- Islam, B.I., A.E. Musa, E.H. Ibrahim, A.A.S. Salma and M.E. Babiker. 2014. Evaluation and characterization of tannery wastewater. J. Forest Prod. Ind., 3: 141-150.
- Jaiswal, D. and H.A. Elliott. 2011. Long-term phosphorus fertility in wastewater-irrigated cropland. J. Environ. Qual., 40: 214-223.
- Jan, F.A., M. Ishaq, S. Khan, I. Ihsanullah, I. Ahmad and M. Shakirullah. 2010. A comparative study of human health risks via consumption of food crops grown on wastewater irrigated soil (Peshawar) and relatively clean water irrigated soil (lower Dir). J. hazard. Mater., 179: 612-621.
- Kalavrouziotis, I.K., P.H. Koukoulakis, M. Sakellariou-Makrantonaki and C. Papanikolaou. 2009. Effects of treated municipal wastewater on the essential nutrient interactions in the plant of *Brassica oleracea* var. Italica. *Desalin.*, 242: 297-312.
- Khadhar, S., T. Higashi, H. Hamdi, S. Matsuyama and A. Charef. 2010. Distribution of 16 EPA-priority polycyclic aromatic hydrocarbons (PAHs) in sludges collected from nine Tunisian wastewater treatment plants. *J. hazard. Mater.*, 183: 98-102.
- Khaleel, R.I., N. Ismail and M.H. Ibrahim. 2013. The impact of waste water treatments on seed germination and biochemical parameter of *Abelmoschus esculentus* L. *Procd. Soc. Behv. Sci.*, 91: 453-460.
- Khan, M.G., G. Daniel, M. Konjit, A. Thomas, S.S. Eyasu and G. Awoke. 2011. Impact of textile waste water on seed germination and some physiological parameters in pea (*Pisum sativum L.*), Lentil (*Lens esculentum L.*) and gram (*Cicer arietinum L.*). Asian J. Pl. Sci., 10: 269.

- Khan, S., S. Rehman, A.Z. Khan, M.A. Khan and M.T. Shah. 2010. Soil and vegetables enrichment with heavy metals from geological sources in Gilgit, northern Pakistan. *Ecotoxicol. Environ. Saf.*, 73: 1820-1827.
- La Bella, S., T. Tuttolomondo, C. Leto, G. Bonsangue, R. Leone, G. Virga and M. Licata. 2016. Pollutant removal efficiency of a pilot-scale Horizontal Subsurface Flow in Sicily (Italy) planted with *Cyperus alternifolius* L. and *Typha latifolia* L. and reuse of treated wastewater for irrigation of *Arundo donax* L. for pellet production-Results of two-year tests under Mediterranean climatic conditions. *Desalin. Water Treat.*, 57: 22743-22763.
- Lasat, M.M. 2002. Phytoextraction of toxic metals. J. Environ. Qual., 31: 109-120.
- Meli, S., M. Porto, A. Belligno, S.A. Bufo, A. Mazzatura and A. Scopa. 2002. Influence of irrigation with lagooned urban wastewater on chemical and microbiological soil parameters in a citrus orchard under Mediterranean condition. *Sci. Total Environ.*, 285: 69-77.
- Mitra, A. and S.K. Gupta. 1999. Effect of sewage water irrigation on essential plant nutrient and pollutant element status in a vegetable growing area around Calcutta. *J. Ind. Soc. Soil Sci.*, 47: 99-105.
- Moraetis, D., F.E. Stamati, N.P. Nikolaidis and N. Kalogerakis. 2011. Olive mill wastewater irrigation of maize: Impacts on soil and groundwater. *Agr. Water Manag.*, 98: 1125-1132.
- Morgan, K.T., T.A. Wheaton, L.R. Parsons and W.S. Castle. 2008. Effects of reclaimed municipal waste water on horticultural characteristics, fruit quality, and soil and leaf mineral concentration of citrus. *Hort. Sci.*, 43: 459-464.
- Nagda, G.K., A.M. Diwan and V.S. Ghole. 2006. Seed germination bioassays to assess toxicity of molasses fermentation based bulk drug industry effluent. *Elec. J. Environ. Agri. Food Chem.*, 5: 1598-1603.
- Ogoyi, D.O., C.J. wita, E.K. Nguu and P.M. Shiundu. 2011. Determination of heavy metal content in water, sediment and microalgae from Lake Victoria, East Africa. *The Open Environ. Eng. J.*, 4: 156-161.
- Omran, M.S., T.M. Waly, E.A. Elnaim and B.M.B. El Nashar. 1988. Effect of sewage irrigation on yield, tree components and heavy metals accumulation in navel orange trees. *Biol. Waste*, 23: 17-24.
- Pan, M. and L.M. Chu. 2016. Phytotoxicity of veterinary antibiotics to seed germination and root elongation of crops. *Ecotoxicol. Environ. Saf.*, 126: 228-237.
- Pedrero, F. and J.J. Alarcón. 2009. Effects of treated wastewater irrigation on lemon trees. *Desalin.*, 246: 631-639.
- Pedrero, F., I. Kalavrouziotis, J.J. Alarcón, P. Koukoulakis and T. Asano. 2010. Use of treated municipal wastewater in irrigated agriculture-Review of some practices in Spain and Greece. Agri. Water Manag., 97: 1233-1241.
- Peña, A., M.D. Mingorance, I. Guzmán, L. Sánchez, A.J. Fernández-Espinosa, B. Valdés and S. Rossini-Oliva. 2014.

Protecting effect of recycled urban wastes (sewage sludge and wastewater) on ryegrass against the toxicity of pesticides at high concentrations. *J. Environ. Manag.*, 142: 23-29.

- Pereira, B.F.F., Z.L. He, P.J. Stoffella and A.J. Melfi. 2011. Reclaimed wastewater irrigation and its impacts on salinity and accumulation of macro- and micronutrients in soil. J. Environ. Qual. ID: 2010-17013.
- Pescod, M.B. 1992. Wastewater treatment and use in agriculture. FAO Irrigation and Drainage Paper 47, Food & Agriculture Organization of the United Nations, Rome.
- Ping, L.I.U., H.J. Zhao, L.L. Wang, Z.H. Liu, J.L. Wei, Y.Q. Wang, L.H. Jiang, L. Dong and Y.F. Zhang. 2011. Analysis of heavy metal sources for vegetable soils from Shandong Province, China. Agr. Sci. China, 10: 109-119.
- Prodgers, R.A. and W.P. Inskeep. 1991. Heavy metal tolerance of inland saltgrass (*Distichlis spicata*). The Great Basin Naturalist, 271-278.
- Qadir, M. and J.D. Oster. 2004. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. *Sci. Total Environ.*, 323: 1-19.
- Rosa, C.E.V., M. Sierra and C.M. Radetski. 1999. Use of plant tests in the evaluation of textile effluent toxicity. *Ecotoxicol. Environ. Res.*, 2: 56-61.
- Salem, F., N. Afef, H. Ben Ouada and H. Ben Mansour. 2015. Reuse of textile wastewater after treatment with isolated bacteria from Oued Hamdoun River. *Bioremed. J.*, 19: 296-302.
- Shah, A., A. Niaz, N. Ullah, A. Rehman, M. Akhlaq, M. Zakir and M. Suleman Khan. 2013. Comparative study of heavy metals in soil and selected medicinal plants. J. Chem., 2013.
- Sharma, R.K., M. Agrawal and F. Marshall. 2007. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. *Ecotoxicol. Environ. Saf.*, 66: 258-266.
- Sophocleous, M., M.A. Townsend, F. Vocasek, L. Ma and A. KC. 2009. Soil nitrogen balance under wastewater management: field measurements and simulation results. J. Environ. Qual., 38: 1286-1301.
- Tan, H.T., K.R. Pillai and D.J. Barry. 1979. Possible utilization of rubber factory effluent on cropland. Proceedings of the Rubber Research Conference, October 1975, Institute of Malaysia, pp. 154.
- Umebese, C.E., O.E. Ade-Ademilua and B.O. Olonisakin. 2009. Impact of Combined Industrial Effluent on Metal Accumulation, Nitrate Reductase Activity and Yield of Two Cultivars of Vigna unguiculata (L.) Walp. J. Environ. Sci. Technol., 2: 146-152.
- Ungar, I.A. 1978. Halophyte seed germination. *The Bot. Rev.*, 44(2): 233-264.
- WHO. 2006. Guidelines for the safe use of wastewater, excreta and greywater (Vol. 1). World Health Organization.
- Xu, J., L. Wu, A.C. Chang and Y. Zhang. 2010. Impact of longterm reclaimed wastewater irrigation on agricultural soils: A preliminary assessment. J. Hazard. Mater., 183: 780-786.

(Received for publication 22 August 2020)