HYDROGEN SULFIDE INDUCED BY HYDROGEN PEROXIDE MEDIATES DARKNESS-INDUCED STOMATAL CLOSURE IN ARABIDOPSIS THALIANA

YINLI MA*, LIUXI WANG, LUHAN SHAO, JIAO NIU AND FENGXI ZHENG

College of Life Sciences, Shanxi Normal University, Linfen 041004, People's Republic of China *Corresponding author's email: mayinli1978@163.com

Abstract

Hydrogen sulfide (H₂S) plays an important role in the regulation of stomatal movement in plants. Here we present the relationships and functions of H₂S and hydrogen peroxide (H₂O₂) in stomatal movement by darkness in *Arabidopsis thaliana*. H₂S synthesis inhibitors and scavengers inhibited darkness-induced stomatal closure, H₂S generation and L-/D-cysteine desulfhydrase (L-/D-CDes) activity increase in wild-type leaves. Darkness induced stomatal closure in wild-type plants, but failed in L-/D-CDes deletion mutants *Atl-cdes* and *Atd-cdes*. Additionally, both L-/D-CDes activity and H₂S content were significantly decreased after applying H₂O₂ synthesis inhibitors and scavengers in wild-type leaves of H₂S content and L-/D-CDes activity of mutant lines of NADPH oxidase gene *AtrbohF* and *AtrbohD/F* mutants leaves, but increase H₂O₂ levels in *Atl-cdes* and *Atd-cdes* guard cells. Taken together, we conclude that both H₂S and H₂O₂ synthesis via promoting the activity of NADPH oxidase, and further led to the production of L-/D-CDes-derived H₂S and stomatal closure in *A. thaliana*. NADPH oxidase gene *AtrbohF* participated in the process.

Key words: Gasotransmitter, Stomatal movement, Darkness, Arabidopsis.

Abbreviations:		H_2S	Hydrogen sulfide
ABA	Abscisic acid;	HT	Hypotaurine
ABC	ATP-binding cassette	L-/D-CDes	L-/D-cysteine desulfhydrase
AOA	Aminooxy acetic acid	NaHS	Sodium hydrosulfide
ASA	Ascorbic acid	N ₃ H ₃ KO ₃	Potassium pyruvate
CAT	Catalase	NH ₃	Ammonia
СО	Carbon monoxide	NH ₂ OH	Hydroxylamine
DPI	Diphenylene iodonium	NO	Nitric oxide
DTT	N, N-dimethyl- <i>p</i> -phenylenediamine	NOX	NADPH oxidase
	dihydrochloride and dithiothreitol	ROS	Reactive oxygen species
H ₂ DCF-DA	2', 7'-dichlorodihydrofluorescein diacetate	SHAM	Salicylhydroxamic acid
H_2O_2	Hydrogen peroxide	UV-B	Ultraviolet-bradiation

Introduction

Hydrogen sulfide (H₂S), a novel gasotransmitter, has a similar function with carbon monoxide (CO) and nitric oxide (NO). Early research is devoted to its toxicity studies. while neglecting its physiological functions in plants and animals. Nowadays, H₂S is reported as a new type of gas signal molecule, which regulates many physiological processes of animals and plants. For example, in animals, H₂S is involved in brain development, regulation of heart and nervous system, diastolic cardiovascular and digestive tract smooth muscle (Wang, 2002; Kimura, 2002). Compared with the research degree in animals, the understanding of the function of H₂S in plant growth and development is far from enough. However, with the increasing attention of researchers, there are also many new discoveries about the physiological role of H₂S in plants. H₂S not only promotes the growth and development of plants, for example, increasing the seed germination rate, promoting the root development, enhancing the photosynthesis, prolonging the florescence and delaying senescence, but also enhances the resistance of plant to abiotic stresses (Zhang et al., 2009; Li et al., 2012a; Wang et al., 2012; Jin et al., 2013; Duan et al., 2015; Mostofa et al., 2015; Ding et al., 2019). In addition, it is also found that H₂S is an important signaling molecule regulating

stomatal movement (García-Mata & Lamattina, 2010). H_2S interacts with abscisic acid (ABA) and participates in regulating stomatal movement in *Arabidopsis thaliana*, located upstream of ATP-binding cassette (ABC) transporter regulating stomatal closure by ABA (Jin *et al.*, 2013). H_2S also participates in stomatal closure by ethylene, and NO acts upstream of it (Liu *et al.*, 2012).

Hydrogen peroxide (H₂O₂), another kind of signal molecule in plant cells, is one of the main reactive oxygen species (ROS) produced in many metabolism processes with relatively stable molecular properties (Apel & Hirt, 2004). H₂O₂ is generated by enzymatic sources including cell wall peroxidases in plant cells, NADPH oxidases (NOX), or polyamine oxidases (Veal et al., 2007). A large number of studies have shown that plant tissue can resist all kinds of abiotic or biological stresses via the production of H₂O₂, including extreme temperature, ABA, ultraviolet-b radiation (UV-B), darkness, ethylene and bacterial invasion etc (Neill et al., 2002; Desikan et al., 2004; Larkindale & Huang, 2004; She et al., 2004; He et al., 2005; Desikan et al., 2006; He et al., 2017; Zhang et al., 2017). Moreover, H2O2 also mediates different physiological processes in plants, and resistance to adversity, defense response to pathogenic bacteria, gene expression, stomatal movement, and programmed cell death, all of which have important regulatory roles

(Potikha et al., 1999; Neill et al., 2002; Ren et al., 2002; Laloi et al., 2004; Li et al., 2007).

Both H_2O_2 and H_2S have been reported to mediate stomatal closure by darkness, and H_2S functions downstream of H_2O_2 during the process in *Vicia faba* (She *et al.*, 2004; Ma *et al.*, 2018). However, it is unclear that whether H_2S participates in stomatal closure by darkness in *A. thaliana*. The interaction between H_2S and H_2O_2 and their enzymatic pathways in the process needs to be elucidated. To address these questions, *A. thaliana* genotypes (*Atl-cdes*, *Atd-cdes*, *AtrbohD*, *AtrbohF*, *AtrbohD/F* mutants and wild-type) were adopted to investigate the significance and interactions between H_2S and H_2O_2 in stomatal closure by darkness.

Methods

Chemicals: The molecular probe H_2DCF -DA was bought from Biotium (Hayward, CA, USA), while 2-(*N*morpholino) ethanesulfonic acid (MES), salicylhydroxamic acid (SHAM), potassium pyruvate (C₃H₃KO₃), aminooxy acetic acid (AOA), hypotaurine (HT), hydroxylamine (NH₂OH), catalase (CAT), ammonia (NH₃), diphenylene iodonium (DPI), D-cysteine, dimethyl sulfoxide (DMSO), ascorbic acid (ASA), L-cysteine, dithiothreitol (DTT) and *N*, *N*-dimethyl-*p*-phenylenediamine dihydrochloride were acquired from Sigma-Aldrich (Located in St Louis, MO, USA). Unless stated otherwise, the other chemicals were purchased from various Chinese suppliers with highest analytical grade.

Plant materials: A. thaliana ecotype Columbia (Col-0) was applied throughout this study. Seeds of L-/D-cysteine desulfhydras deletion mutants of AtL-CDes T-DNA insertion line (N541918, designated Atl-cdes), AtD-CDes T-DNA insertion line (CS853264, designated Atd-cdes), NADPH oxidase gene single mutant line (N9555, designated AtrbohD and N9557, designated AtrbohF), and homozygous transposon insertion double mutant line (N9558, designated AtrbohD/F) were provided by Nottingham Arabidopsis Stock Centre (NASC, Nottingham, UK). The mutants Atd-cdes, Atl-cdes and AtrbohF, AtrbohD, AtrbohD/F have been respectively identified by PCR and RT-PCR. Wild-type and mutants seeds of A. thaliana were surface-sterilized and sown on sterilized vermiculite. Seedlings were stratified in darkness for 2-4 d at 4°C. After growing 4 euphylla, they were transferred in a controlledenvironment chamber with a humidity of 80%, 16-h light/8h dark cycle, and day/night temperature cycle of 22°C/18°C with a photon flux density of 100 $\mu mol {\cdot} m^{-2} {\cdot} s^{-1}$ PAR generated by cool white fluorescent tubes (Philips, New York, NY, USA). Fully expanded leaves were harvested at 4-6 weeks for immediate use.

Stomatal bioassays: Stomatal bioassay was performed as described by McAinsh *et al.*, (1996) with minor modifications. The epidermal strips newly prepared were treated with MES-KCl buffer (10 mM MES, 50 mM KCl, 100 μ M CaCl₂, pH 6.15) alone or containing various compounds or inhibitors in light (100 μ mol·m⁻²·s⁻¹) or darkness. And then the stomatal apertures were recorded by an optical microscope and eyepiece graticule previously calibrated with a stage micrometer. In each

treatment, 30 randomly-selected apertures were scored per replicating and the treatment was repeated three times at least. The data provided are the mean \pm s.e. of 90 measurements.

Measurement of H₂S emission: Measurement of H₂S emission was determined by the formation of methylene blue, which was performed as described by Hou et al., (2013) with slight modifications. Fully expanded leaves were utilized to measure H₂S emission. Firstly, the leaves were treated with MES-KCl buffer alone or containing various scavengers or synthesis inhibitors in light (100 μ mol·m⁻²·s⁻¹) or darkness for 3h, and then 0.1 g of them was taken for grinding by adding 0.9 mL 20 mM Tris-HCl (pH 8.0) buffer. After the centrifugation, the supernatant and a trap with 1% of zinc acetate were put into a test tube, and then the tube was quickly sealed with a Parafilm at the same time. Then 100 µL 20 mM N,N-dimethyl-pphenylenediamine dihydrochloride dissolved in 7.2 M HCl and 100 µL 30 mM FeCl₃ dissolved in 1.2 M HCl were added into the trap after the absorption of H₂S for 30 min at 37°C. Finally, the absorbance was measured at 670 nm. In addition, a calibration curve was also drawn with known concentrations of Na₂S solution. Each treatment was repeated three times, and all the data presented are the mean \pm s.e.

L-/D-cysteine desulfhydrase activity measurements: H₂S was determined to further study the activity of L-/D-cysteine desulfhydrase (L-/D-CDes), which was released from L-/Dcysteine within a certain period of time (Riemenschneider et al., 2005; Hou et al., 2013). The assay contained in the total volume of 1mL includes 100 µL 0.8 mM L-/D-cysteine, 400 μL 100 mM Tris-HCl, 400 μL 2.5 mM DTT, and 100 μL supernatant. Then 100 µL 20 mM N, N-dimethyl-pphenylenediamine dihydrochloride dissolved in 7.2 M HCl and 100 µL 30 mM FeCl3 dissolved in 1.2 M HCl were added into the trap after reaction for 30 min at 37°C. And the rate of H₂S released was presented by the determination of absorbance at 670 nm. Besides, the activity of L-CDes and D-CDes was also confirmed by the same method, but the pH of Tris-HCl buffer used previously was 8, and the latter was 9. Each treatment was repeated three times, and the data presented were the mean \pm s.e.

Measurement of endogenous H₂O₂: H₂O₂ levels were measured with 2', 7'-dichlorodihydrofluorescein diacetate (H₂DCF-DA) by the method of Allan & Fluhr (1997) with minor modifications. In order to find the influence of H₂S scavenger and synthesis inhibitors on darkness-induced H₂O₂ production in guard cells, the epidermal strips were incubated in MES-KCl buffer alone in light or MES-KCl buffer alone or containing HT, AOA, NH2OH and $C_3H_3KO_3 + NH_3$ in darkness for 3 h, and then immediately loaded with 50 µM H2DCF-DA in Tris-KCl buffer (10 mM Tris, 50 mM KCl, pH 7.2) for 10 min in darkness. To study the effects of darkness on H₂O₂ levels in guard cells of Atlcdes and Atd-cdes mutants, the epidermal strips were incubated in MES-KCl buffer alone in light or MES-KCl buffer alone in darkness for 3h, and then immediately loaded with 50 µM H₂DCF-DA in Tris-KCl buffer for 10 min in darkness. After that, excess dye was washed off with

fresh Tris-KCl loading buffer in darkness, and the epidermal strips were immediately examined by TCS SP5 laser-scanning confocal microscopy (Leica Lasertechnik Gmbh, Heidelberg, Germany) with following settings: excitation 488 nm, emission 530 nm, power 10%, zoom about 4, normal scanning speed, and frame 512×512 pixels. Leica image software and Photoshop 7.0 (Adobe, San Jose, CA, USA) were used to analyze and process the images acquired. Each treatment was repeated at least three times. The depicted confocal images represent similar results from three replications.

Statistical analyses

The statistical importance of treatments was checked by one-way ANOVA as well as Duncan's multiple range test. The data was considered to be statistically important when *P*-values were below 0.05. All the figures were plotted by Origin 6.1 (Microcal Software, Nothampton, MA, USA) and processed with Photoshop 7.0 (Adobe, San Jose, CA, USA).

Results

Involvement of H₂S in stomatal closure by darkness

Influences of darkness on stomatal aperture in wildtype, *Atl-cdes* and *Atd-cdes*: To analyze whether H_2S mediates stomatal closure by darkness, the influences of H_2S synthesis inhibitors AOA, NH₂OH, $C_3H_3KO_3+NH_3$, H_2S scavenger HT and the producer of L-/D-cysteine desulfhydrase (L-/D-CDes) on stomatal aperture of wildtype (Col-0), as well as the influence of darkness on stomatal aperture of *Atl-cdes* and *Atd-cdes* which are T-DNA insertion lines were detected. Moreover, it is found that the presence of HT, AOA, NH₂OH, and $C_3H_3KO_3+NH_3$ inhibited darkness-induced stomatal closure. The stomatal closure was not induced when NH₂OH, AOA, HT, and $C_3H_3KO_3+NH_3$ were applied in light (As shown in Fig. 1a). Actually, *Atl-cdes* and *Atd-cdes* stomatal aperture could not be changed by darkness (Fig. 1b). From the results, we found that L-/D-CDes generated H_2S might participate into stomatal closure by darkness in *A. thaliana*.

Effects of H_2S modulators on darkness-induced L-/D-CDes activity and H_2S content in wild-type: To confirm the metabolic pathways participated in H_2S systhesis, Land D-CDes activities and H_2S content in wild-type were determined. In fact, the content of H_2S in darkness was greatly higher than that in light, while HT, AOA, NH₂OH, and $C_3H_3KO_3+NH_3$ could reduce darkness-induced H_2S production (Fig. 2a). Similarly, there was a remarkable increase in activity by darkness, and L- and D-CDes activities were reduced in the presence of HT, AOA, NH₂OH, and $C_3H_3KO_3+NH_3$ in darkness (Fig. 2b and 2c). However, no effect was observed when HT, AOA, NH₂OH, and $C_3H_3KO_3+NH_3$ were applied in light (Fig. 2a-c). These results suggested that darkness-induced H₂S biosynthesis might function via L- and/or D-CDes in *A. thaliana*.

Relationship between H_2O_2 and H_2S in stomatal closure by darkness

Effects of H_2O_2 modulators on L-/D-CDes activity, and H_2S content in darkness: For the sake of analyzing the relationship between H_2O_2 and H_2S during stomatal closure by darkness, H_2S content and L-and D-CDes activities in leaves of wild-type plants were examined with application of H_2O_2 synthesis inhibitors SHAM, DPI, and H_2O_2 scavenger ASA, CAT in darkness. Moreover, the treatment with SHAM, ASA, DPI, and CAT in darkness not only decreased H_2S content, but also reduced L- and D-CDes activities in wild-type (Fig. 3a-c). We proposed that both NADPH oxidase-derived and peroxidase-derived H_2O_2 might be a novel upstream component of H_2S signaling cascade during stomatal closure by darkness in *A. thaliana*.

Fig. 1. Effects of HT, AOA, NH₂OH and C₃H₃KO₃+NH₃ on stomatal closure by darkness in wild-type (a), and effects of darkness on stomatal aperture in *Atl-cdes* and *Atd-cdes* (b). (a) Control: with MES-KCl buffer, 15 μ M HT, 0.4 mM AOA, 0.4 mM NH₂OH, and 0.4 mM C₃H₃KO₃+0.4 mM NH₃ in light (white columns) or in darkness (black columns) for 3 h. (b) Col-0, *Atl-cdes* and *Atd-cdes* in light (white columns) or in darkness (black columns) for 3 h. (b) Col-0, *Atl-cdes* and *Atd-cdes* in light (white columns) for 3 h. Means in Fig.1a and 1b is from three in dependent determinations; different letters indicate significant differences (Duncan's multiple range test, *p*<0.05).

<u>a</u> 120 Dark H₂S content (nmol·g⁻¹FW) 100 80 þ 60 40 20 0 DPI Control ASA CAT SHAM Treatments Light L-CDes activity (nmol·g⁻¹FW·min⁻¹) .(b)후 280 Dark 240 200 160 120 80 40 0 DPI Control ASA CAT SHAM Treatments D-CDes activity (nmol·g⁻¹FW·min⁻¹) 280 Light C Dark a 240 200 160 b þ 120 þ 80 40 0 ASA CAT DPI Control SHAM Treatments

(a)

Fig. 2. Effects of HT, NH₂OH, AOA, C₃H₃KO₃+NH₃ on darknessinduced H₂S content (a), L-CDes activity (b) and D-CDes activity (c) in wild-type. (a-c) Control: with MES-KCl buffer, 15 μ M HT, 0.4 mM NH₂OH, 0.4 mM AOA, and 0.4 mM C₃H₃KO₃+0.4 mM NH₃ in light (white columns) or in darkness (black columns) for 3 h. Further illustration in Fig. 2a-c is the semblable as in Fig. 1a.

Influences of darkness on L-/D-CDes activity and H_2S content in *AtrbohD*, *AtrbohF*, and *AtrbohD/F*: To further investigate the interaction between H_2O_2 and H_2S , L- and D-CDes activities, as well as H_2S content, were detected in the leaves of *AtrbohD*, *AtrbohF*, and *AtrbohD/F*. H_2S content in leaves of wild-type and *AtrbohD* in darkness was apparently higher than that in

Fig. 3. Effects of ASA, CAT, DPI, and SHAM on darknessinduced H₂S content (a), L-CDes activity (b), and D-CDes activity (c) in wild-type. (a-c) Control: with MES-KCl buffer, 100 μ M ASA, 100 units·mL⁻¹CAT, 10 μ M DPI, and 10 μ M SHAM in light (white columns) or in darkness (black columns) for 3h. Further illustration in Fig. 3a-c is the semblable as in Fig. 1a.

the light, and L-and D-CDes activities of leaves was significantly enhanced as well (Fig. 4a-c). However, darkness couldn't induce any increase in H_2S content and L-and D-CDes activities in *AtrbohF* and *AtrbohD/F* (Fig. 4a-c). The results further suggested that H_2S acted downstream of H_2O_2 in darkness-regulated stomatal closure in *A. thaliana*.

Light

Fig. 4. Effects of darkness on H_2S content (a), L-CDes activity (b) and D-CDes activity (c) in the leaves of NADPH oxidase mutants *AtrbohD*, *AtrbohF* and *AtrbohD/F*. MES-KCl buffer alone in light (white columns) or in darkness (black columns) for 3 h. Further illustration in Fig. 4a-c is the semblable as in Fig. 1a.

Influences of H₂S modulators on the guard cells H₂O₂ levels by darkness in wild-type: For the sake of further validating the relationship between H₂O₂ and H₂S, the fluorescence of H₂O₂ in guard cells after using HT, NH₂OH, AOA, and N₃H₃KO₃+NH₃ in darkness was examined by H₂DCF-DA, which was previously used to measure the production of H₂O₂ in stomatal closure by darkness by Allan & Fluhr (1997). A great increase was caused by darkness in H_2O_2 levels of guard cells (Fig. 5b). However, treatment with HT, NH₂OH, AOA, and N₃H₃KO₃+NH₃ in darkness had no clear effects on H_2O_2 levels (Fig. 5c-f). Therefore, a fact was consolidated by these results, H_2S functioned downstream of H_2O_2 in stomatal closure by darkness in *A. thaliana*.

Influences of darkness on H_2O_2 production in *Atl-cdes* and *Atd-cdes*: To confirm that H_2S mediated darknessinduced stomatal closure as a downstream factor of H_2O_2 , H_2O_2 production of *Atl-cdes* and *Atd-cdes* was detected. In darkness, H_2O_2 fluorescence in *Atl-cdes* and *Atd-cdes* guard cells were significantly stronger than that in light (Fig. 6c-f) without significant difference from the wildtype (Fig. 6a, b). Additionally, the above data further demonstrated that H_2S , as a downstream factor of H_2O_2 mediated darkness-induced stomatal closure in *A. thaliana*.

Discussion

Stomata are important structures to exchange gases and water in higher plants, which respond to different environmental factors by controlling their aperture. The mechanism of regulating stomatal movement is extremely complex. Other than the classical theory of cell turgor pressure, the stomatal closure is also affected by cytoplasmic calcium concentration changes, pH, protein phosphorylation, K^+ and anion channel regulation (Blatt & Grabov, 1997). During the continuous exploration of stomatal movement mechanism, some essential regulators of signal transduction emerged gradually, such as NO, H_2O_2 , H_2S and so on.

As the third gasotransmitter, H₂S has become a new star in the transduction process of plant signal. Lisjak et al., (2011) reported that exogenous H₂S released by NaHS caused stomatal opening. However, García-Mata & Lamattina (2010) also reported that H_2S induced the stomatal closure in diferent plants. It has been shown that H₂S mediates ABA, ethylene and darkness-regulated stomatal movement (Liu et al., 2012; Jin et al., 2013; Ma et al., 2018), and that NO, CO, and intracellular calcium mediate stomatal movement by darkness (Schwartz, 1985; She et al., 2004; She & Song, 2008). However, the mechanism of H₂S in stomatal movement by darkness is unclear. Our results suggested that stomatal closure by darkness was significantly inhibited by H₂S scavenger HT, the inhibitors of H₂S biosynthesis NH₂OH and AOA, and the products of L- and/or D-cysteine desulfhydrase C₃H₃KO₃+NH₃ in wild-type A. thaliana (Fig. 1a). Darkness could induce stomatal closure in wild-type without influence on stomatal aperture of Atl-cdes and Atd-cdes (Fig. 1b). Additionally, HT, AOA, NH₂OH, and C₃H₃KO₃+NH₃ not only reduced the production of darkness-induced H₂S (Fig. 2a), but also diminished L-CDes activity (Fig. 2b) as well as D-CDes activity in darkness (Fig. 2c). From these results, we could find that H₂S was needed for darkness-regulated stomatal closure in A. thaliana, and L-/D-CDes was one of the key enzymes for its synthesis, which was consistent with the results of Ma et al. (2018) in V. faba.

Fig. 5. Effects of HT, NH₂OH, AOA, and C₃H₃KO₃+NH₃ on darknessinduced H₂O₂ production in guard cells of wild-type were processed for 3h as below: (a) with MES-KCl buffer in light; (b) MES-KCl buffer alone, (c) involving 15 μ M HT, (d) 0.4 mM NH₂OH, (e) 0.4 mM AOA, and (f) 0.4 mM C₃H₃KO₃+0.4 mM NH₃ in darkness. (g) is the average H₂DCF-DA fluorescent intensity of guard cells in images (a)-(f) or (a')-(f'). Bars in (f) = 40 μ m and in (f') = 25 μ m for all images. Further illustration in Fig. 5g is the semblable as in Fig. 1a.

Fig. 6. Effects of darkness on the level of H_2O_2 in guard cells of *Atl-cdes* and *Atd-cdes*. MES-KCl buffer in light (a), in darkness (b), *Atl-cdes* in light (c), or in darkness (d) and *Atd-cdes* in light (e), or in darkness (f). (g) is the average H_2DCF -DA flfluorescent intensity of guard cells in images (a)-(f) or (a')-(f'). Bars in (f) = 40 µm and in (f') = 25 µm for all images. Further illustration in Fig. 6g is the semblable as in Fig. 1a.

Hydrogen peroxide (H₂O₂) is another important signal molecule involved in the signal transduction of plant cells. As the second messenger in plants, H_2O_2 participates in many physiological processes including stomatal movement. McAinsh et al., (1996) proved for the first time that H_2O_2 had an effect on stomatal movement in plants, and exogenous H₂O₂ could promote calcium level increase, leading to stomatal closure. For the past few years, deep research on the function of H_2O_2 has been carried out in stomatal movement. It has been proved that guard cells accumulate H₂O₂ to promote stomatal closure under the stimulation of drought, salt, high concentration of CO2, ethylene, ABA, UV-B, brassinosteroid (Allan & Fluhr, 1997; Pei et al., 2000; Neill et al., 2002; She et al., 2004; He et al., 2005; An et al., 2012, Yao et al., 2013; Shi et al., 2015; Ma et al., 2019a). In addition, H₂O₂ also mediates darkness-induced stomatal closure (Desikan et al., 2004; She et al., 2004; Ma et al., 2018). Data from Desikan et al., (2004) indicated that stomatal closure was related to H2O2 accumulation in guard cells of *pea*, and the large gp91^{phox} subunit (rboh genes) encoding NOX was appeared in guard cells of *pea*, which probably participated in ABA responses and darknes. It has been reported that soaking with H₂O₂ could not only increase L-CDes activity, promote H₂S production, but also improve the germination rate of Jatropha curcas seeds (Li et al., 2012b). Li & He (2015) showed that H_2O_2 acted downstream of H₂S in seed germination of Vigna radiata. Wang et al., (2015) indicated that H₂O₂ was involved in exogenous H₂S-induced stomatal closure. Ma et al., (2019a) showed that H₂O₂ acted upstream of H₂S in NaCl-induced stomatal closure in V. faba. Additionally, H₂O₂ has been reported to function upstream of H₂S in CdCl₂-induced stomatal closure in Vigna radiata (Ma et al., 2019b). The latest research showed that H₂S induced by H₂O₂ mediates EBR-induced stomatal closure of A. thaliana, and H₂S production was catalyzed by AtL-CDes/AtD-Cdes and H2O2 production depended on AtrbohF (Ma et al., 2021). Our previous research H₂O₂ has been reported to function upstream of H_2S in darkness-induced stomatal closure in V. faba, and H₂S production is catalyzed by AtL-CDes/AtD-CDes, H₂O₂ production depends on NADPH oxidase and cell wall peroxidase (Ma et al., 2018). However, the interaction between H₂O₂ and H₂S is still unclear in darkness-induced stomatal closure in A. thaliana. The data displayed here suggested that H₂O₂ modulators ASA, CAT, DPI and SHAM could significantly inhibit the production of darkness-induced H_2S and L-/D-CDes activity enhancement in A. thaliana wild-type leaves (Fig. 3), H₂S scavenger HT and its synthesis inhibitors AOA, NH₂OH and $C_3H_3KO_3+NH_3$ had no significant effects on H_2O_2 levels of wild-type guard cells in darkness (Fig. 5). Compared with light treatment, there was no significant effect of darkness on H₂S content and L-/D-CDes activity in AtrbohF and AtrbohD/F leaves (Fig. 4), but could increase H₂O₂ levels in Atl-cdes and Atd-cdes (Fig. 6). These data indicated that H₂O₂ acts upstream of H₂S in stomatal closure induced by darkness in A. thaliana, and H₂S production was catalyzed by AtL-CDes/AtD-CDes, H₂O₂ production depends on cell wall peroxidase and NADPH oxidase gene AtrbohF. Our results are consistent with the previous reports (Ma et al., 2018).

Conclusions

In this study, we explored the interaction between H_2O_2 and H_2S in stomatal closure by darkness. Our results indicated that darkness induced H_2O_2 synthesis via promoting the activity of NADPH oxidase and peroxidase, and further led to the production of L-/D-CDes-derived H_2S and stomatal closure in *A. thaliana*. In fact, our work not only enriches the signal transduction network to regulate the stomatal movement induced by darkness, but also provides experimental evidences in plant physiology, cell biology and genetics for the interaction between H_2O_2 and H_2S in stomatal movement.

Acknowledgements

This work was supported by grants from the Innovative Training Program for College Students in Shanxi, China (No.2019229). The funding bodies had no role in the experimental design, data analysis, decision to publish, or preparation of the manuscript.

References

- Allan, A.C. and R. Fluhr. 1997. Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. *Plant Cell*, 9: 1559-1572.
- An, G.Y., X.Y. Ding, G.L. Wu, H.W. Li and C.P. Song. 2012. ECS1 mediates CO₂-induced stomatal closure and the production of H₂O₂ in *Arabidopsis thaliana*. *Chin. Bull. Bot.*, 47: 209-216.
- Apel, K. and H. Hirt. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann. Rev. Plant Biol., 55: 373-399.
- Blatt, M.R. and A. Grabov. 1997. Signal redundancy, gates and the integration in the control of ion channels for stomatal movement. J. Exp. Bot., 48: 529-537.
- Desikan R., M.K. Cheung, A. Clarke, S. Golding, M. Sagi, R. Fluhr, C. Rock, J. Hancock and S. Neill. 2004. Hydrogen peroxide is a common signal for darkness- and ABAinduced stomatal closure in *Pisum sativum. Fun. Plant Biol.*, 31: 913-920.
- Desikan, R., K. Last, R. Harrettwilliams, C. Tagliavia, K. Harter, R. Hooley, J.T. Hancock and S.J. Neill. 2006. Ethyleneinduced stomatal closure in *Arabidopsis* occurs via *AtrbohF*-mediated hydrogen peroxide synthesis. *Plant J.*, 47: 907-916.
- Ding, H., D. Ma, X. Huang, J. Hou and T. Guo. 2019. Exogenous hydrogen sulfide alleviates salt stress by improving antioxidant defenses and the salt overly sensitive pathway in wheat seedlings. *Acta Physiol. Plant.*, 41: 123-133.
- Duan, B.B., Y.H. Ma, M.R. Jiang, F. Yang, L. Ni and W. Lu. 2015. Improvement of photosynthesis in rice (*Oryza sativa* L.) as a result of an increase in stomatal aperture and density by exogenous hydrogen sulfide treatment. *Plant Growth Regul.*, 75: 33-44.
- García-Mata, C. and L. Lamattina. 2010. Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling. *New Phytol.*, 188: 977-984.
- He, J.M., H. Xu, X.P. She, X.G. Song and W.M. Zhao. 2005. The role and the interrelationship of hydrogen peroxide and nitric oxide in the UV-B-induced stomatal closure in broad bean. *Fun. Plant Biol.*, 32: 237-247.
- Hou, Z.H., L.X. Wang, J. Liu, L.X. Hou and X. Liu. 2013. Hydrogen sulfide regulates ethylene-induced stomatal closure in *Arabidopsis thaliana*. J. Integ. Plant Biol., 55: 277-289.

- Jin, Z.P., S.W. Xue, Y.N. Luo, B.H. Tian, H.H. Fang, H. Li and Y.X. Pei. 2013. Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in *Arabidopsis. Plant Physiol. Biochem.*, 62: 41-46.
- Kimura, H. 2002. Hydrogen sulfide as a neuromodulator. *Mol. Neurobiol.*, 26: 13-19.
- Laloi, C., K. Apel and A. Danon. 2004. Reactive oxygen signalling: The latestnews. *Currr. Opin. Plant Biol.*, 7: 323-328.
- Larkindale, J. and B. Huang. 2004. Thermotolerance and antioxidant systems in *Agrostis stolonifera*: Involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J. Plant Physiol., 161: 405-413.
- Li, S., L. Xue, S. Xu, H. Feng and L. An. 2007. Hydrogen peroxide involvement ingeneration and development of adventitious roots in cucumber. *Plant Growth Regul.*, 52: 173-180.
- Li, Z.G., M. Gong, H. Xie, L. Yang and J.B. Li. 2012a. Hydrogen sulfide donor sodium hydrosulfide-induced heat tolerance in tobacco (*Nicotiana tabacum* L.) suspension cultured cells and involvement of Ca²⁺ and calmodulin. *Plant Sci.*, 185-186: 185-189.
- Li, Z.G., M. Gong and P. Liu. 2012b. Hydrogen sulfide is a mediator in H₂O₂-induced seed germination in *Jatropha Curcas. Acta Physiol. Plant*, 34: 2207-2213.
- Li, Z.G. and Q.Q. He. 2015. Hydrogen peroxide might be a downstream signal molecule of hydrogen sulfifide in seed germination of mung bean (*Vigna radiata*). *Biologia*, 70: 753-759.
- Lisjak, M., T. Teklić, I.D.Wilson, M. Wood, M. Whiteman and J.T. Hancock. 2011. Hydrogen sulfide effects on stomatal apertures. *Plant Signal. Behav.*, 6: 1444-1446.
- Liu, J., Z.H. Hou, G.H. Liu and L.X. Liu. 2012. Hydrogen sulfide may function downstream of nitric oxide in ethylene-induced stomatal closure in *Vicia faba* L. J. Integ. Agric.,11: 1644-1653.
- Ma, Y.L., J. Niu and X. Wu. 2018. Hydrogen sulfide may function downstream of hydrogen peroxide in mediating darkness-induced stomatal closure in *Vicia faba. Fun. Plant Biol.*, 45: 553-560.
- Ma, Y.L., W. Zhang, J. Niu, Y. Ren and F. Zhang. 2019a. Hydrogen sulfide may function downstream of hydrogen peroxide in mediating salt stress-induced stomatal closure in *Vicia faba. Fun. Plant Biol.*, 46: 136-145.
- Ma, Y. L., W. Zhang and J. Niu. 2019b. Hydrogen sulfide may function downstream of hydrogen peroxide in CdCl₂induced stomatal closure in *Vigna radiata* L.S. *Afr. J. Bot.*, 124: 39-46.
- Ma, Y.L., L.H., Shao, W. Zhang and F.X. Zheng. 2021. Hydrogen sulfide induced by hydrogen peroxide mediates brassinosteroid-induced stomatal closure of *Arabidopsis* thaliana. Fun. Plant Biol., 48: 195-205.
- McAinsh, M.R., H. Clayton, T.A. Mansfield and A.M. Hetherington. 1996. Changes in stomatal behavior and guard cell cytosolic free calcium in response to oxidative stress. *Plant Physiol.*, 111: 1031-1042.
- Mostofa, M.G., D. Saegusa, M. Fujita and L.S.P. Tran. 2015. Hydrogen sulfide regulates salt tolerance in rice by maintaining Na^+/K^+ balance, mineral homeostasis and

oxidative metabolism under excessive salt stress. Front. Plant Sci., 6: 1055-1068.

- Neill, S., R.J. Desikan and J. Hancock. 2002. Hydrogen peroxide signalling. *Curr. Opin. Plant Biol.*, 5: 388-395.
- Pei, Z.M., Y. Murata, G. Benning, S. Thomine, B. Klusener, G.J. Allen, E. Grill and J.I. Schroeder. 2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. *Nature*, 406: 731-734.
- Potikha, T.S., C.C. Collins, D.I. Johnson, D.P. Delmer and A. Levine. 1999. The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. *Plant Physiol.*, 119: 849-858.
- Ren, D., H. Yang and S. Zhang. 2002. Cell death mediated by MAPK is associated with hydrogen peroxide production in *Arabidopsis. J. Biol. Chem.*, 277: 559-565.
- Riemenschneider, A., V. Nikiforova, R. Hoefgen, K.L.J. De and J. Papenbrock. 2005. Impact of elevated H₂S on metabolite levels, activity of enzymes and expression of genes involved in cysteine metabolism. *Plant Physiol. Biochem.*, 43: 473-483.
- Schwartz, A. 1985. Role of Ca²⁺ and EGTA on stomatal movements in *Commelina communis* L. *Plant Physiol.*, 79: 1003-1005.
- She, X.P., X.G. Song and J.M. He. 2004. Role and relationship of nitric oxide and hydrogen peroxide in light/darkregulated stomatal movement in *Vicia faba*. Acta Bot. Sin., 46: 1292-1300.
- She, X.P. and X.G. Song. 2008. Carbon monoxide-induced stomatal closure involves generation of hydrogen peroxide in *Vicia faba* guard cells. J. Integ. Plant Biol., 50: 1539-1548.
- Shi, C.Y., C. Qi, H.Y. Ren, A.X. Huang, S.M. Hei and X.P. She. 2015. Ethylene mediates brassinosteroid-induced stomatal closure via Gα protein-activated hydrogen peroxide and nitric oxide production in *Arabidopsis. Plant J.*, 82: 280-301.
- Veal, E.A., A.M. Day and B.A. Morgan. 2007. Hydrogen peroxide sensing and signaling. *Mol. Cell*, 1: 1-14.
- Wang, L.X., X.Y. Ma, Y.M. Che, L.X. Hou, X. Liu and W. Zhang. 2015. Extracellular ATP mediates H₂S-regulated stomatal movements and guard cell K⁺ current in a H₂O₂-dependent manner in *Arabidopsis. Chin. Sci. Bull.*, 60: 419-427.
- Wang, R. 2002. Two's company, three's a crowd: can H₂S be the third endogenous gaseous transmitter. *FASEB*, 16: 1792-1798.
- Wang, Y.Q., L. Li, W.T. Cui, S. Xu, W.B. Shen and R. Wang. 2012. Hydrogen sulfide enhances alfalfa (*Medicago sativa*) tolerance against salinity during seed germination by nitric oxide pathway. *Plant Soil*, 351: 107-119.
- Yao, Y., X. Liu, Z. Li, X. Ma, H. Rennenberg and X. Wang. 2013. Drought-induced H₂O₂ accumulation in subsidiary cells is involved in regulatory signaling of stomatal closure in maize leaves. *Planta*, 238: 217-227.
- Zhang, H., J. Tang, X.P. Liu, Y. Wang, W. Yu, W.Y. Peng, F. Fang, D.F. Ma, J.Z. Wei and L.Y. Hu. 2009. Hydrogen sulfide promotes root organogenesis in *Ipomoea batatas*, *Salix matsudana* and *Glycine max. J. Integ. Plant Biol.*, 51: 1086-1094.
- Zhang, T.Y., F.C. Li, C.M. Fan, X. Li, F.F. Zhang and J.M. He. 2017. Role and interrelationship of mek1-mpk6 cascade, hydrogen peroxide and nitric oxide in darkness-induced stomatal closure. *Plant Sci.*, 262: 190-199.

(Received for publication 3 July 2020)