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Abstract 

 

Leaf development is a pivotal stage in the plant life cycle, involving intricate physiological and morphogenetic processes 

characterized by dynamically shifting molecular mechanisms and metabolite patterns, which have not been extensively studied 

in the traditional medicinal plant Drynaria roosii Nakaike. This study utilized next-generation sequencing to profile the leaf 

transcriptome of D. roosii, identifying significant differences in gene expression between two distinct developmental stages, 

with a focus on transcription factors that regulate leaf formation and metabolite production. De novo assembly of high-quality 

sequences generated 82,476 unigenes of average length 1,292 bp. FPKM analysis unveiled substantial transcriptome changes 

during leaf development. Additionally, non-targeted metabolomics detected 1,297 compounds across both stages, with lipids 

representing the most abundant metabolite group. This study offers dynamic insights into transcriptomic and metabolomic 

shifts during D. roosii leaf development, elucidates crucial regulatory networks involved in this process, and enhances the 

annotation of the D. roosii genome, paving the way for future investigations. 
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Introduction 

 
Leaf development represents a fundamental phase in the 

plant life cycle, characterized by a series of intricate and 
dynamic processes involving numerous genes that determine 
leaf morphology, size, photosynthetic capacity, and 
metabolite landscapes. Advanced next-generation sequencing 
(NGS) technologies (e.g., Roche/454 and Illumina High-Seq) 
have revolutionized genomic research by providing lower-
cost high-throughput sequencing compared to traditional 
methods, leading to numerous studies employing de novo 
sequencing, genome resequencing, and transcriptome analysis 
(Gase, 2012). Such studies have yielded critical functional 
insights into the molecular mechanisms governing gene 
expression (Morozova & Marra, 2008), especially in non-
model organisms without reference genomes like Drynaria 
roosii Nakaike (Sun et al., 2018). The extensive genomic and 
transcriptomic data generated by NGS support various 
applications, including gene discovery and localization, gene 
expression studies, comparative genomics, and molecular 
marker development. For example, transcriptomic studies 
using Illumina paired-end sequencing was researched in 
several plant species, such as Apium graveolens L. (Jia et al., 
2015), Bergera koenigii L. (Shivakumar et al., 2019), 
Eucommia ulmoides (Li et al., 2019), Panicum virgatum L. 
(Palmer et al., 2019), Osmanthus fragrans (Chen et al., 2020), 
Brassica campestris L. (Shi et al., 2023), and Epimedium 
pubescens (Xu et al., 2023).   

As a complementary approach to transcriptomics, 

metabolite profiling has been a powerful tool for exploring 

leaf developmental changes, revealing that metabolite 

levels significantly influence plant phenotypes. Data 

obtained from this approach have enhanced our 

understanding of dynamic metabolite changes occurring 

during leaf development (Zhang et al., 2018; Li et al., 

2019; Xu et al., 2023) and enabled the identification of 

metabolism products and their functional roles within 

metabolic networks and pathways (Töpfer et al., 2015; 

Chang et al., 2024). Integrating metabolomics with 

transcriptomics has enhanced our understanding of 

biosynthetic mechanisms related to essential metabolic 

pathways (Li et al., 2018; Zhu et al., 2018), particularly 

those involved in the synthesis and retention of medicinally 

important bioactive compounds in plant tissues (Nett et al., 

2020; Lau & Sattely, 2015). 

Despite these advancements, the molecular and 

biochemical processes regulating leaf growth and 

development in the traditional Chinese medicinal plant D. 

roosii, known as GuSuiBu in China (Sun et al., 2017; Sun et 

al., 2018; Wufuer et al., 2020; Chang et al., 2024), remain 

poorly understood due partly to limited transcriptomic data 

across its developmental stages. In this study, we employed 

Illumina paired-end sequencing to construct a comprehensive 

transcriptome database for D. roosii leaves at two distinct 

developmental stages while concurrently conducting 

metabolome profiling to categorize leaf metabolites and 

examine dynamic changes in their accumulation. All of the 

discoveries of this study may dig new acknowledgement on 

the interacted mechanisms underlying metabolite biosynthesis 

and regulation during D. roosii leaf growth and development, 

highlighting the importance of certain integrated approaches 

in elucidating these processes. 

 

Material and Methods 

 

Plant materials: D. roosii plants were obtained from the 

medicinal plant resource nursery of Guizhou University of 

Traditional Chinese Medicine in March 2024. For 

transcriptome analysis, two growth stages were selected, 

designated as Stage1 and Stage2, with representative tissues 

collected for every stage (Fig. 1). Four experimental replicates 

were setted for every stage, using ten leaves from a single 

plant per replicate. Each sample was examined using three 

biological replicates. For metabolome analysis, six 

experimental replicates were analyzed for every growth stage. 
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Fig. 1. Morphological characterization of D. roosii leaves at 

different growth stages. 

 

RNA preparation and Illumine analysis: We isolated the 

total RNA extracts from leaves through the 

cetyltrimethylammonium bromide (CTAB) method, 

followed by assessments of RNA’s purity, RNA integrity 

number (RIN), 28S/18S ratio, and fragment length 

distribution, which were performed through Agilent 2100 

Bioanalyzer (RNA 6000 Nano Kit, Takara, Beijing, China). 

Additionally, a NanoDrop spectrophotometer was used to 

assess RNA purity then the RNA samples were sent to the 

Beijing Genomics Institute (BGI) for further purification 

followed by library construction and RNA-Seq.  

To obtain clean reads, SOAPnuke (v1.6.5) was 

introduced to filter raw sequencing data, and the treated data 

was then saved in FASTQ format (Chen et al., 2018). Trinity 

(v2.13.2) was adopted to assemble the clean reads into 

contigs, Benchmarking Universal Single-Copy Orthologs 

(BUSCO) was introduced to evaluate the quality of the 

assembly (Grabherr et al., 2011). Expression levels of genes 

were quantified using RNA-Seq by Expectation-

Maximization software (RSEM, v1.3.1) (Li & Dewey, 2011). 

Unigene-encoded protein sequences in unigenes were 

collected with TransDecoder (v5.5.0) (Kim et al., 2015) and 

calculated against the SwissProt database BLAST. The 

verified homologous protein sequences and coding regions 

based on alignments against the Pfam database were predicted 

using Hmmscan. GO and KEGG databases were used to 

match unigenes and their possible functions, including 

transcription factor roles. DESeq2 (v1.4.5) was chosen to 

separate the DEGs (Wang et al., 2010), with the criteria of Q 

value ≤0.05 or FDR ≤0.001. A heatmap of distinct DEG 

clusters was produced through the pheatmap function. 

Functional annotation of DEGs was performed using 

hypergeometric distribution analysis with the phyper function 

in R software (https://en.wikipedia.org/wiki/Hypergeometric 

_distribution) for KEGG enrichment and the TermFinder 

package (https://metacpan.org/pod/GO::TermFinder) for GO 

enrichment. Genes with significant enrichment were 

identified based on a Q value ≤0.05. 

Nontargeted metabolic profiling: For nontargeted 

metabolomic analysis, six biological replicates per group 

were prepared using standard equipment, including an 

Eppendorf 5430 low-temperature, a weaving tissue grinder 

(JXFSTPRP), a QL-901 high-speed centrifuge (Thermo 

Scientific, USA), a Milli-Q water purification system 

(Integral Millipore Corporation, USA), and a Maxi Vac 

Beta refrigerated vacuum concentrator (GENE Company). 

Reagents included LCMS-grade methanol (A454-4) and 

acetonitrile (A998-4) from Thermo Fisher Scientific 

(USA), ammonium formate (17843-250G, Honeywell 

Fluka, USA), formic acid (FA, 50144-50ml, DIMKA, 

USA), and internal controls (, 13C3-Progesteron, d5-

Tryptophan, d3-Leucine and13C9-Phenylalaninee).  

Each 50-μg sample was homogenized in a Eppendorf 

(1.5-mL) tube with 800 μL of precooled extraction solution 

(methanol: H2O = 7:3) and 20 μL of internal standard 1 

(IS1). The samples were homogenized for 10 min using a 

tissue grinder set to 50 Hz, followed by ultrasonication, 1-

hour incubation without shaking at -20°C, and centrifugation 

(14,000 rpm at 4°C for 15 min). A 600-μL aliquot of each 

supernatant was filtered through a 0.22-μm filter, and 20 μL 

of the filtered supernatants were pooled to generate a quality 

control (QC) sample for evaluating LC-MS quality.  

ACQUITY UPLC I-Class Plus ultra-high-

performance liquid chromatography (UPLC) system 

(Waters, USA) was introduced to display LC-MS 

experiment, coupled with a Q Exactive high-resolution 

mass spectrometer (Thermo Scientific). Chromatographic 

separation of a 5-μL injection volume per sample was 

completed by a Hypersil GOLD aQ column (100 mm × 2.1 

mm, 1.9 μm, Thermo Scientific) with mobile phases of 

0.1% FA in water (Phase A) and 0.1% FA in acetonitrile 

(Phase B) delivered at a flow rate of 0.3 mL/min under the 

following gradient conditions: 5% Phase B 0.0-2.0 min, 5-

95% Phase B 2.0-22.0 min, hold at 95% Phase B 22.0-27.0 

min, and washing with 95% Phase B 27.1-30 min. The 

column temperature was maintained at 40°C. 

MS data (necessary and non-necessary) were 

produced through scan ranges ( positive isons, 125-1500 

m/z; negative ions, 100-1500 m/z; automatic gain control 

(AGC) target of 1e6; a resolution of 70,000; maximum ion 

injection time, 100 ms). The top three precursors were 

subjected to MS/MS fragmentation with the following 

conditions: the max-ion injection time, 50 ms; 30,000 

resolution; AGC set to 2e5; the stepped normalized 

collision energy settings, 20, 40, and 60 eV). The ESI 

parameters were presented as: the auxiliary gas flow rate is 

10; the sheath gas flow rate is 40; the negative-ion mode 

|KV| is 3.20; capillary temperature is 320 °C; the positive-

ion mode spray voltage (|KV|) is 3.80; and auxiliary gas 

heater temperature is 350°C. 

Data were processed using Compound Discoverer 3.3 

(Thermo Scientific, https://mycompounddiscoverer.com/) 

and further analyzed with the mzCloud database, BMDB, and 

the ChemSpider online database, resulting in a data matrix 

along with the below items, metabolite peak areas and the 

identified results. The obtained data were thereafter 

recollected through using Compound Discoverer 3.3 with 

parameters presented as: parent ion mass deviation < 5 ppm, 

retention time deviation < 0.2 min mass deviation of fragment 

https://en.wikipedia.org/
https://metacpan.org/
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ions < 10 ppm. Peak area-based data normalization was 

performed using probabilistic quotient normalization (PQN) 

(Guida et al., 2016), and batch effects were corrected using 

QC-based robust locally estimated scatterplot smoothing 

(LOESS) signal correction (QC-RLSC) (Dunn et al., 2011). 

Metabolites with coefficients of variation exceeding 30% 

were excluded, and the remaining data underwent log2 

transformation. Next, partial least squares-discriminant 

analysis (PLS-DA) and orthogonal PLS-DA (OPLS-DA), 

incorporating orthogonal signal correction (OSC) were 

employed to decompose the X matrix into Y-related and 

unrelated components. This approach reduced model 

complexity while enhancing its explanatory capability and 

predictive power. The data were further analyzed using Pareto 

scaling and 7-fold cross-validation to construct a robust 

OPLS-DA model for comparative purposes. 
 

Quantitative real-time (qRT) PCR analysis: We 
conducted qRT-PCR to validate the expressed levels of 
selected genes through RNA-Seq. RNA samples from D. 
roosii were converted into cDNA, with three technical 
replicates produced for qPCR using AceQ® qPCR SYBR 
Green Master Mix (Low ROX Premixed) and a RT-PCR 
System (Roche, LightCycler 480 II). We thereafter the 
single amplicons through melting curve analysis and gel 
electrophoresis. Cycle threshold (CT) values were 
normalized to reference genes then relative fold changes 
were determined according to the ΔΔCT method as 
previously described (Livak et al., 2001). 
 

Results  
 

DEG analysis in D. roosii leaves across two 

developmental stages: To investigate the molecular basis 

for physiological changes during the growth and 

development of D. roosii leaves, we used an RNA-Seq 

Analyzer II system to conduct comprehensive 

transcriptome analysis. This analysis targeted differential 

gene expression across two leaf developmental stages, 

utilizing six cDNA libraries derived from total RNA 

preparations. Each sample yielded over 45.44 million raw 

reads, resulting in an estimated 44.08 million high-quality 

reads per sample (Table 1). For the sample, data reliability 

was confirmed by a high Q30 score of ≥92.79%. 

The combined reads with high-quality from both 

developmental stages provided an extensive overview of 

the D. roosii transcriptome. De novo assembly of these 

reads, performed using Trinity software, produced 82,476 

unigenes, the average length is 1,292 base groups (Fig. 

2A). Open reading frames (ORFs) were discovered using 

TransDecoder, generating a comprehensive dataset of 

nucleotide and protein sequences suitable for applications 

such as gene cloning, phylogenetic studies, and functional 

analysis. Among these unigenes, 19,102 exhibited high-

integrity ORFs with complete coding sequences obtained 

from start to stop codons (Fig. 2B). Distinct yet consistent 

transcriptomic profiles were observed across biological 

replicates for the different developmental stages. 

Gene expression changes were quantified by 

evaluating the abundance of gene transcripts, expressed in 

fragments per kilobase of transcript per million mapped 

reads (FPKM). Validation of several genes was performed 

via qRT-PCR analysis. Strong correlations between RNA-

Seq and RT-PCR data were observed, confirming the 

consistency of gene expression patterns between the two 

methods (Fig. 3). Additionally, a correlation heat map 

demonstrated high-level agreement among the three 

biological replicates.  

DEG analysis revealed significant alterations in the D. 

roosii transcriptome during leaf development, as reflected by 

the 4,577 overexpressed and 5,238 lowexpressed genes in 

total in Stage2 versus Stage1. The above discoveries suggest 

a complex regulatory mechanism involving gene expression 

modulation achieved through signal transduction during leaf 

development. Further bio-informatic analysis tools including 

GO (Fig. 2C) and KEGG (Fig. 2D) helped to identify the 

crucial biological processes and the important pathways 

which involved in the two developmental stages, highlighting 

terms such as "plant-pathogen interaction", "biosynthesis of 

secondary metabolites," and "metabolic pathways". 
 

Metabolic differences between two D. roosii leaf 

developmental stages: Analysis of leaf metabolomic data 

using principal component analysis (PCA) revealed clear 

separation between Stage1 and Stage2 samples based on PC1 

(49.38%) and PC2 (13.36%) (Fig. 4A). We selected 1,297 

metabolites in total, which were grouped into thirty items, 

with the most abundant belonging to "lipids" (82), 

"flavonoids" (29), "benzene and derivatives" (27), "others" 

(26), "carbohydrates" (18), "amino acids (AAs), peptides, and 

analogues" (17), and "terpenoids" (17). KEGG categorization 

further classified these metabolites into eighteen groups. 

To pinpoint significantly changed metabolites (SCMs) 

between Stage1 and Stage2 leaves, we analyzed six biological 

replicates. Among the 1,297 metabolites, 382 exhibited 

significant differences in accumulation between the two 

stages: 224 metabolites showed increased accumulation, 

while 158 showed decreased accumulation in Stage2 

compared to Stage1 (Fig. 4B, Fig. 4C). KEGG pathway 

enrichment analysis revealed SCMs were synthesized through 

pathways associated with "flavonoid biosynthesis", 

"phenylpropanoid biosynthesis", and "biosynthesis of 

secondary metabolites" among others (Fig. 4D). 

 

Table 1. Summary of RNA-Seq datasets for the six libraries. 

Samples 
Total raw reads 

(M) 

Total clean reads 

(M) 

Total clean bases 

(Gb) 

Clean reads Q20 

(%) 

Clean reads Q30 

(%) 

Stage 1-1 45.44 44.08 6.61 97.73 93.11 

Stage 1-2 46.08 44.29 6.64 97.69 92.92 

Stage 1-3 45.76 44.25 6.64 97.65 92.79 

Stage 2-1 46.40 44.11 6.62 97.76 93.15 

Stage 2-2 45.44 44.11 6.62 97.73 93.10 

Stage 2-3 45.44 44.19 6.63 97.66 92.84 
-1, -2, and -3: three biological replicates of each leaf sample 
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Fig. 2. Genes expressed in two different stages of D. roosii leaf development. (A) Assembled transcript length distributions of D. roosii. 

(B) CDS length distributions of D. roosii. (C) Analysis of GO terms for differentially expressed genes of D. roosii among the two 

developmental stages. (D) Analysis of KEGG for differentially expressed genes of D. roosii among the two developmental stages. 
 

 
 

Fig. 4. Characterization of metabolite profiles in D. roosii leaves at two developmental stages. (A) Principal Component Analysis (PCA) score 

plot illustrating the separation of metabolite profiles between Stage 1 and Stage 2 leaves. (B) Number of significantly changed metabolites 

(SCMs) between Stage 1 and Stage 2 leaves. (C) Heatmap and cluster analysis of metabolite profiles at the metabolome level, comparing 

different stages of leaf development. (D) KEGG pathway annotation of SCMs identified between the two stages of D. roosii leaves. 
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Fig. 3. The qRT-PCR validation of differentially expressed genes 

of D. roosii.  

 

 
 

Fig. 5. Pathway enrichment analysis bubble plot. X-axis 

enrichment factor (richfactor), the larger the value illustrates the 

greater the proportion of differential metabolites annotated to that 

pathway and the differential metrics being associated with. The 

circles represent the indicator pathway of the pathway being 

associated with omics, the triangles represent metabolic 

pathways, the graph size represents the number of differential 

metabolites annotated to that pathway versus the indicator of the 

difference in the pathway being associated with omics, and the 

graph color indicates pathway significance. 

 

Transcript-metabolite correlation network: In the post-

genomic era, systems biology approaches, such as multi-

omics integration, have risen to prominence for elucidating 

biological processes. We applied canonical correlation 

analysis (CCA) to create a correlation network linking 

differential metabolites with key indexes of associated omics 

data, focusing on metabolites with correlation coefficients |r| 

> 0.8. Ranking the top 20 correlations by p-value or Q-value, 

the resulting network plot offers a comprehensive 

perspective on the relationships between differential 

metabolites and associated omics metrics. By annotating 

these metabolites and differential indices, such as changes in 

metabolite concentrations or gene expression levels, to 

KEGG pathways, a complete network diagram was 

generated, allowing for visual analysis of metabolite 

expression associations with various biological phenomena. 

Pathway enrichment analysis identified biological pathways 

most significantly linked to these processes, with pathway 

bubble plots illustrating differential metabolite enrichments 

across correlated omics pathways (Fig. 5). 
 

Discussion 
 

Despite the lack of a published genome for D. roosii, a 

satisfactory annotation rate approaching 33.22% was obtained 

for unigenes or proteins found in at least one database, which 

when combined with high correlation coefficients among 

biological replicates and further validation through qPCR, 

confirms the high quality of our transcriptome sequence data 

and our analysis results. The comparative analysis of 

transcripts between Stage2 and Stage1 samples revealed that 

D. roosii leaf DEGs were predominantly enriched in KEGG 

pathway terms such as "plant-pathogen interaction", 

"biosynthesis of secondary metabolites", and "metabolic 

pathways". Similar pathway enrichments have been observed 

in studies of B. campestris L. (Shi et al., 2023), which 

highlighted leaf developmental pathways including "circadian 

rhythm", "starch and sucrose metabolism", and "plant 

hormone signal transduction". Studies on E. pubescens (Xu et 

al., 2023) also identified significantly enriched functional 

terms related to leaf development, such as "RNA transport", 

"MAPK signaling pathway - plant", and "plant hormone 

signal transduction". 

To expand upon these findings, we investigated the 

expression levels of TF families with potential roles in 

regulating these pathways. The strong link between gene 

expression levels and gene functions suggests crucial roles for 

TFs in D. roosii leaf growth and development. For example, 

several genes exhibited higher expression in Stage2 compared 

to Stage1 leaves, including Unigene43668-S5 (PREDICTED: 

Ziziphus jujuba putative 12-oxophytodienoate reductase 11), 

Unigene44778-S1 (GQ03519_K15 mRNA), Unigene46895-

S3 (cellulose synthase catalytic subunit (CesA1) mRNA), 

Unigene29840-S1 (PREDICTED: Momordica charantia 

TBC1 domain family member 15-like), Unigene42346-S2 

(Trifolium alexandrinum microsatellite TaSSR267), and 

Unigene39996-S2 (PREDICTED: Raphanus sativus ABC 

transporter G family member 31). Conversely, genes such as 

Unigene35404-S3 (isolate PnARF6b auxin response factor 6), 

Unigene46207-S3 (nuclear/nucleolar GTPase 2), 

Unigene19646-S5 (DDB1- and CUL4-associated factor 

homolog 1), Unigene27559-S5 (O-fucosyltransferase 38), 

Unigene27839-S3 (protein argonaute 1), and Unigene23487-

S6 (intron-binding protein aquarius-like) were expressed at 

lower levels in Stage2 versus Stage1 leaves. These findings 

highlight TFs with distinct expression patterns during D. 

roosii leaf development and point to TFs specific to different 

developmental stages, although additional studies are needed 

to elucidate their roles in these processes. 

The extensive differential regulation of genes and 

metabolites across various metabolic pathways during D. 

roosii leaf development emphasizes the complex nature of 
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this process, which is orchestrated by a complex network 

encompassing gene interactions and signaling pathways, as 

exemplified by the detection of 1,297 metabolites spanning 

thirty substance categories and their derivatives in D. roosii 

leaves during the two developmental stages. This is in 

contrast to a study by Li et al., (2019) utilizing widely 

targeted metabolite analysis conducted via UPLC-MS in E. 

ulmoides, which identified only 515 metabolites 

encompassing primarily 127 flavonoids, 16 vitamins, 44 

AA derivatives, 46 organic acids, 9 phenolamides, and 8 

isoflavones (Li et al., 2019), with similar analyses of two 

rice varieties detecting 512 metabolites in one and 510 in 

the other (Xue et al., 2021).  

Our study also identified numerous D. roosii leaf 

SCMs across two developmental stages that likely 

influence processes impacting leaf morphology, metabolite 

accumulation, and photosynthetic capacity through their 

active roles in various metabolic pathways, particularly 

leaf developmental pathways related to metabolite 

synthesis and degradation. Notably, significant changes 

were observed in the levels of metabolites medicarpin 3-O-

glucoside-6'-malonate, kaempferol 3-(3''-acetyl-alpha-L-

arabinopyranosyl)-(1->6)-glucoside, and flavin 

mononucleotide, among others. Overall, the accumulation 

of 382 metabolites in leaves showed significant differences 

between Stage1 and Stage2, with 224 increasing and 158 

decreasing. The discoveries of this research enhance our 

learning of the complex regulatory networks involved in D. 

roosii leaf development, guiding future research to advance 

the functional genomics of this important medicinal plant. 

 

Conclusions 

 

This study utilized next-generation sequencing to profile 

the leaf transcriptome of D. roosii, identifying significant 

differences in gene expression between two distinct 

developmental stages, with a focus on transcription factors 

that regulate leaf formation and metabolite production. FPKM 

analysis unveiled substantial transcriptome changes during 

leaf development. Additionally, non-targeted metabolomics 

detected 1,297 compounds across both stages, with lipids 

representing the most abundant metabolite group. 
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