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Abstract 

 

Salinity is considered as a major abiotic stress for plants as it challenges plant growth and productivity severely. Plants 

have developed plenty of biochemical, physiological and metabolic strategies to deal with salt stress at multiple levels. A better 

understanding of these contrivances is an important step towards achieving the goal of sustainable development of agriculture. 

This review aims to provide a brief overview of our current understanding of plant salt-tolerance mechanisms from five aspects: 

specialized salt glands, ion homeostasis and osmotic adjustment, antioxidant defense system, hormonal regulation and 

modifications in membrane composition. Finally, we highlight unsolved issues that remain to be addressed in future studies. 
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Introduction 

 

Plants may be subjected to diverse abiotic stresses, 

such as cold, drought, flooding and salinity during their 

life cycle due to their sessile nature. These abiotic stresses 

adversely affect plant growth and development, leading to 

substantial crop losses worldwide. Among these 

conditions, salinity stress has emerged as a serious and 

major one as it affects about 70% of the farm soils around 

the world (Zhang et al., 2017).  

High salt concentration impairs the ability of plants 

to absorb water and could generate various stresses, such 

as ionic, osmotic and oxidative stress to plants which may 

exert negative effects on various important physiological, 

biochemical and metabolic processes, including 

photosynthesis, respiration and protein synthesis, 

ultimately leading to inhibited growth and development or 

death (Feng et al., 2014; Farooq et al., 2017; Gao et al., 

2019; Yan et al., 2020). 

Plants have evolved various contrivances for 

responding and adapting to salt stress at multiple levels 

including molecular, cellular, tissue, morphological and 

physiological level (Deng et al., 2016; Zhao et al., 2018; 

Xiao et al., 2019; Zhang et al., 2019). Generally, they 

achieve this goal either by expelling excess salt out of the 

cells or through rapid and harmonized changes to tolerate 

the presence of salts within the cells. 

It becomes more and more urgent and important to 

cultivate salt-tolerant crop varieties to feed the ever-

increasing human population nowadays; while exploring 

and investigating plant salt-stress response mechanisms 

will provide valuable information for it. Here, we will 

present recent advances in our understanding of major 

strategies by plant to cope with salt threats. 

 

Strategies of salt tolerance by plants 

 

Specialized salt glands: Specialized epidermal structures, 

terms salt glands, have been developed by some 

halophytes, called recretohalophytes, to resist salinity 

(Deng et al., 2015; Dassanayake & Larkin, 2017). Salt 

glands could be categorized into four structural types: salt 

bladders, multicellular glands, bicellular hairs and 

unicellular hairs. Bladders, the simplest form of salt 

glands which are composed of a large vacuolated cell with 

or without 1 or 2 stalk cells are only found in Aizoaceae 

and Amaranthaceae. These plants could sequester salt in 

the bladder cell vacuole to avoid damage to their growth. 

Multicellular glands are the widely distributed type of salt 

glands, consisting of cells differentiated into basal 

collecting cells and distal secretory cells. Upon salt stress, 

salt could be collected by collecting cells from mesophyll 

cells around and transported to secretory cells 

(Dassanayake & Larkin, 2017). The third type of salt 

glands, bicellular hairs, consisting of a basal cell and a 

cap cell, are mainly found in chloridoid grasses. For these 

plants, the cuticle around the salt gland could form a 

chamber to store secreted salts. Unicellular hairs exist in 

the wild rice species Porteresia coarctata and are highly 

vacuolated. The number of salt hairs can be regulated by 

P.coarctata to adapt to external salt concentration 

(Sengupta & Majumder, 2010). 

Mechanisms underlying salt secretion from the salt 

glands are of great interest to researchers in recent years 

(Feng et al., 2015; Yuan et al., 2016; Garcia et al., 2017). 

A proteomic approach was applied to compare the 

proteome of salt gland-rich tissues and salt gland-

deprived tissues of the mangrove tress species Avicennia 

officinalis in order to identify proteins present in the 

former, which shed light on future research designed to 

demonstrate salt secretion mechanisms of salt glands (Tan 

et al., 2015). Besides, using Limonium bicolor as an 

optimal model, Yuan et al., screened the transcriptome of 

Limonium bicolor leaves in response to salt treatment, 

identifying the candidate genes in the salt gland involved 

in salt secretion, and proposed a model for salt secretion 

pathway of the salt gland (Yuan et al., 2016).  

Salt glands are nature’s desalination devices that 

harbor potentially valuable information about salinity 

stress adaption. It is believed that the combination of 
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various advanced molecular and cellular technologies will 

bring better understanding of how salt glands contribute 

to salinity tolerance. 

 

Ion homeostasis and osmotic adjustment: One 

deleterious effect imposed by salinity stress is ion toxicity 

or imbalance, which could give rise to decreased 

enzymatic activities and photosynthetic rate. Na+/K+ ratio 

plays an important role in plant salinity tolerance, and 

therefore plants need to maintain a low Na+/K+ ratio in the 

cytosol for survival, that is, to keep the concentration of 

toxic ions such as Na+ low and accumulate essential ions 

such as K+ (Shao et al., 2014; Almeida et al., 2017).  

Ion compartmentalization is a vital strategy for plants 

to achieve ion homeostasis. Na+ is pumped into vacuoles, 

leading to reduced detrimental effects of excess Na+ in the 

cytosol and the vacuolar Na+/H+ antiporters are thought to 

contribute to the sequestration of Na+ (Kumar et al., 

2017). On the other hand, Ca2+ plays important roles in 

maintaining Na+/K+ balance, which can activate high-

affinity K+ uptake, as well as ameliorate Na+ toxicity by 

decreasing Na+ influx (Han et al., 2012; Lu et al., 2016). 

Recently, Zheng et al., identified the glycosyltransferase 

QUA1 as an important regulator of cytoplasmic Ca2+ level 

under salinity conditions through screening Arabidopsis 

mutants which are defective in stress-induced Ca2+ 

increase (Zheng et al., 2017). 

Osmotic pressure can also be greatly compromised 

by salinity stress when salt concentration exceeds a 

threshold level. Plants have evolved osmotic adjustments 

to meet this challenge (Zhao et al., 2010; Ilangumaran & 

Smith, 2017). A variety of organic solutes of low 

molecular weight, known as osmotica or osmolytes, 

including amino acids, such as proline, glycine, betaine, 

soluble sugar or its derivative compound, are synthesized 

to compromise osmotic stress at the cellular level. These 

compatible osmoprotectants are present in cytosol and can 

be accumulated in considerable amounts but do not 

interfere with cellular central metabolism (Slama et al., 

2015; Wang et al., 2017). 

Proline is present widely in higher plants and increases 

under salinity stress. It is considered to be involved in 

cytomembrane stabilization and intracellular enzyme 

structure maintenance (Wang et al., 2017). To unravel the 

protective roles of proline upon salinity stress, researchers 

investigated the metabolic regulation responses of proline-

added T. halophilus by using the metabolomic approach. 

The study revealed proline as an effective protective 

molecule for T. halophilus in enhancing the salt resistance 

of cells by means of the regulation of related metabolic 

pathways (He et al., 2017). 
 

Antioxidant defense system: Salt stress can bring about 

the overproduction of various reactive oxygen species 

(ROS), such as superoxide (O2
-), hydroxyl radical (OH), 

hydrogen peroxide (H2O2) and singlet oxygen (1O2), which 

could severely impair cellular structures and components 

via peroxidation of lipids and oxidation of proteins (Kumar 

et al., 2017). An antioxidant defense system, including a 

range of antioxidative enzymes like catalase (CAT), 

superoxide dismutase (SOD), ascorbate peroxidase (APX), 

dehydroascorbate reductase (DHAR), glutathione 

peroxidases (GPX), glutathione S-transferases (GST), and 

glutathione reductase (GR); as well as low molecular 

weight non-enzymatic antioxidants like nitric oxide (NO), 

ascorbic acid (ASH), glutathione, carotenoids, flavones, 

and flavonoids, has been equipped with plants to scavenge 

ROS (Song and Wang, 2015; Chen et al., 2016; Chokshi et 

al., 2017; Siddiqui et al., 2017).  

One of the crucial ROS-scavenging enzymes, 

Ascorbate peroxidase (APX), contributes to H2O2 

detoxification by catalyzing the conversion of H2O2 into 

H2O, and thus it could be directly involved in 

safeguarding plants from detrimental conditions, such as 

salinity stress (Gerszberg & Hnatuszko-Konka, 2017; 

Pandey et al., 2017). Cao et al., compared wild-type 

tobacco plants with transgenic ones overexpressing 

PcAPX (a cytosolic APX gene from Populus tomentosa), 

and revealed that under unfavorable conditions, such as 

salt, drought and oxidative stress, the transgenic plants 

showed more stress tolerance ability. The study identified 

APX as a key antioxidant enzyme in abiotic stress 

tolerance in plants (Cao et al., 2017).  

Besides antioxidative enzymes which can remove 

ROS directly, a number of non-enzymatic antioxidant 

molecules have also been shown to enhance the 

antioxidant capacity of plants. Nitric oxide (NO), a small 

non-charged, water and lipid soluble gaseous free radical, 

is an essential redox-signaling molecule in plant biology. 

It acts as a versatile messenger in multiple physiological 

processes and mediates abiotic stress tolerance in plants 

(Hasanuzzaman et al., 2018). There has been increasing 

interest in the roles of NO in plant tolerance against 

salinity stress in recent years. By altering the enzymatic 

activity of several SOD isoforms, exogenously applied 

nitric oxide reduces salinity-induced oxidative damage in 

maize (Klein et al., 2018). It has been reported that under 

salt stress, NO treatment at 100 µM could alleviate the 

salt-induced decrease in photosynthetic performance of 

Indian Mustard (Fatma & Khan, 2014). Furthermore, 

when Mustard grown under salinity stress received sulfur 

(S), NO enhanced photosynthetic capacity of them more 

effectively by regulating oxidative stress, S-assimilation 

pathway and NO generation (Fatma et al., 2016). 

 

Plant hormonal regulations: Plant hormones act as 

essential endogenous cues that contribute to plant 

resistance to adverse environmental stressors. Advances in 

the field of plant stress signaling and adaptive response, 

mainly using model organisms such as Arabidopsis 

thaliana and Oryza sativa, have shown the mechanisms of 

how plant hormones are concerted to signaling networks 

for salinity resistance (Li et al., 2016; Pandey et al., 2017). 

The phytohormone abscisic acid (ABA) is known to 

play crucial roles in plant responses to various non-optimal 

environmental conditions like drought, salinity and pathogen 

infection. Synthesis of ABA increased greatly when plants 

are exposed to salinity or drought stress (Zhu, 2002). It has 

been well established that the expression of ABA 

biosynthesis-related genes such as ABA aldehyde oxidase, 

ABA3, and 9-cis-epoxycarotenoid dioxygenase are induced 

rapidly in stress conditions (Xiong & Zhu, 2003).  
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ABA initiates stomatal closure and a loss of guard cell 

turgor through a signaling cascade to prevent water loss. 

Substantial progress has been made in revealing the 

molecular mechanisms of ABA-mediated modulating of 

stomatal aperture in guard cells (Bauer et al., 2013; 

Eisenach et al., 2017; Ha et al., 2018). Briefly, ABA 

triggers activation of two types anion channels, S-type 

(slow-sustained) and R-type (rapid-transient) in the guard 

cell membrane, leading to plasma membrane depolarization 

and a flow of ions. There are also studies showing reactive 

oxygen species (ROS) or cytosolic Ca2+ as the key second 

messenger in this process (Wang et al., 2013; Brandt et al., 

2015). Recently, a small peptide CLE25 was identified as a 

mobile signaling cue that could modulate stomatal closure 

via ABA in long-distance signaling in dehydration stress 

response (Takahashi et al., 2018). 

In addition to ABA, many other hormones, such as 

gibberellin (GA), cytokinins (CK), jasmonate, ethylene, 

have been established as vital molecules involved in 

alleviation of salinity stress in plants. Various investigations 

have unraveled the presence of crosstalk network among 

different hormonal pathways (Song et al., 2014; Jiroutova 

et al., 2018). Elucidating more specific mechanisms of 

elaborate web of hormonal crosstalk will be an important 

theme in the realm of stress response research. 

 

Modifications in membrane composition: Membrane 

structure modifications through changes of fatty acid 

saturation of membrane lipids contribute to the 

maintenance of homeostasis of membrane permeability and 

have beneficial effect on plant tolerance to environmental 

stress (Mikami & Murata, 2003; Lopalco et al., 2013). 

Increased levels of unsaturated fatty acid in membrane 

lipids enhanced salt tolerance of photosystem II in the 

halophyte Thellungiella compared to that in the glycophyte 

Arabidopsis (Sui & Han, 2014). Consistent with the above 

investigations, overexpression of SsGPAT (glycerol-3-

phosphate acyltransferase gene from Suaeda salsa) gene 

confers enhanced salt stress resistance in Arabidopsis by 

increasing the content of cis-unsaturated fatty acid in 

phosphatidylglycerol (PG), and further retarding the 

photoinhibition of PSII and PSI (Sui et al., 2017). 

Interestingly, a recent report demonstrated the role of lipid 

droplets (LDs) in defense against salinity stress in 

Parachlorella kessleri, which could supply enzymes and 

substances in the process of membrane reconstruction (You 

et al., 2019). 
 

Concluding remarks: Abiotic stresses like cold, drought, 

flooding, salinity have detrimental influence on crop 

growth and yield; while plants have developed powerful 

strategies to counteract these stresses to complete the life 

cycle and survive safely. Understanding the salt stress-

mediated adaptive responses and associated resistance 

mechanisms might help in improving the performance of 

crop plants under saline conditions or design crop plants 

that could better adapt to salt stress. This review highlights 

several aspects of salinity stress tolerance mechanisms, 

including the development of special salt secretory 

structures, ion homeostasis and osmotic adjustment, 

antioxidant defense system, plant hormonal regulations as 

well as alterations in membrane compositions. However, 

salt stress tolerance is a complicated trait involving 

multiple physiological, biochemical and metabolic 

pathways, while many puzzles in this field remain to be 

solved. The relationship of different resistance strategies 

and their crosstalks should be studied to tackle the problem 

of salinity in a more effective way. 
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