# ALTERATION IN AMINO ACID CONTENTS IN DIFFERENT GENOTYPES OF BREAD WHEAT AT DIFFERENT DEVELOPMENTAL STAGES

# MURAT ARDIÇ

Department of Biology, Faculty of Science and Letters, Eskişehir Osmangazi University, TR-26040, Eskişehir, Turkey \*Corresponding email: mardic@ogu.edu.tr

## Abstract

The aim of this study was to determine changes of amino acid levels in thirteen bread wheat genotypes during growth stages of wheat (tillering, flowering, maturity stages and seeds) in growing periods of 2018-2019. Results suggest that important variations and differences occurred among bread wheat genotypes and their growing stages. The amino acid content was found as higher in tillering and flowering, lower in maturity stage. Once changes in amino acid levels increase/ decrease depending upon biochemical activities and crop growth stages, genotypic capacity and features significantly control of amino acid levels in bread wheat. Amino acid levels are higher until the flowering period than during the maturation period indicates that amino acids are of vital importance in plant development. Especially amino acids responsible for growth and development are very important in bread wheat. In addition, differences between genotypes and plant growth stages indicate that amino acids are highly affected by the genotype x environment interaction.

Key words: Bread wheat genotypes, Amino acid levels, Growth stages, Double dendrogram.

### Introduction

Having genetic adaptability to different environments and well resistance to biotic and abiotic stresses, wheat (Triticum spp.) is commonly grown and is a major crop in the world. Besides, it performs very important function in human nutrition as food suppliers as protein, minerals etc. (Shewry, 2007). Although, Wheat yields haven't continuously risen and wheat production in the world is still sufficient, wheat production cannot meet this demand due to demands for food to be increased in the near future. Bread wheat covers main position and vital role in crop production and consumption among the food crops in Türkiye. Wheat seed is processed for different purposes (Bouis, 2003). In Türkiye, covering almost 60% of cereal production, bread wheat plays important activity in demands of carbohydrates, proteins and minerals etc. Among cereals, biochemical and nutritional quality of bread wheat are high (Wronkowska et al., 2008).

Amino acids are present in plant and form protein. Plants synthesize amino acids from the carbon and oxygen that is obtained from air and hydrogen from water in the soil. Amino acids have various prominent functions in plants. Besides their usage during protein biosynthesis, they also represent building blocks for several other biosynthesis pathways and play pivotal roles during signaling processes as well as in plant stress response (Hildebrandt et al., 2015). Amino acids play important role to increase yield and overall quality of crops. The quality and quantity of wheat depends upon the nutritive value of its protein. From nutritional point of view a balance between essential amino acids in the protein complex is important. The protein and amino acid composition of wheat varies with the crop varieties, application of fertilizers, irrigation practices, the soil and climatic conditions of the area (Khan et al., 2014).

Determining amino acid levels in different period of crops helps to understand behavior of amino acids and promising new genotypes. The aim of this study was to determine changes of amino acid levels during growth periods of bread wheat genotypes.

## **Materials and Methods**

Current study was carried out on greenhouse conditions at experimental station of Osmangazi University, Agricultural College Eskişehir. Thirteen genotypes of bread wheat (BW1: Es-26, BW2: Bezostaja-1, BW<sub>3</sub>: Müfitbey, BW<sub>4</sub>: Altay-2000, BW<sub>5</sub>: Sönmez-01, BW<sub>6</sub>: Soyer-02, BW<sub>7</sub>: Çetinel-2000, BW<sub>8</sub>: Harmankaya-99, BW<sub>9</sub>: Sultan-95, BW<sub>10</sub>: Alpu-01, BW<sub>11</sub>: Atay-85, BW12: Özdemir and BW13: Gerek-79) were used in the current study. The bread wheat genotypes used in the study were obtained from Eskişehir Transitional Zone Agricultural Research Institute (GKTAEM), Turkey. This study was carried out in completed randomized block design with three replications in 2018-2019. Seeds were sterilized by bleach (NaOCl 10%) and put into pots (0.75 m width, 1 m length, and 0.75 m height) having 80 kg of humus soil. Soil also had 28.5 % CaCO<sub>3</sub>, 297.3 mmol/kg P2O5, 385.5 mmol/kg K2O, and 2.36% organic matter, 6,11 pH, and 2,63 dS/m electrical conductivity. Plants were grown under greenhouse conditions in the relative humidity of 60% and daily (16 h) and nightly (8 h) temperatures of 25 °C. Seed planting was made in 15<sup>th</sup> of September. By dividing in two (1/2 at sowing period and 1/2 at tillering period), 60 kg N ha<sup>-1</sup> and once (at sowing) 60 kg ha<sup>-1</sup> P<sub>2</sub>O<sub>5</sub> were applied. Normal water (EC=0.8–2.1) dS m<sup>-1</sup>) was used in the study. Plants grew until tillering period (Zadoks 21) in greenhouse conditions until November then pots were put outside for overwinter, and they kept growing under ambient conditions. Pots were protected from bird damage by netting. Three times irrigation at sowing, at stem elongation (Zadoks 24), and at flowering (Zadoks 65) were Irrigations were made. Precipitations were 366, 9 mm in 2018-2019 and 374, 2 mm in long-term years (Table 1).

Table 1. Average, minimum and maximum temperatures, precipitations in long term years in Eskişehir, Turkey

| Climate Param.                 | Jan.  | Feb.  | Mar.  | Apr. | May  | June | July | Aug. | Sept. | Oct. | Nov.  | Dec.  | To./Av. |
|--------------------------------|-------|-------|-------|------|------|------|------|------|-------|------|-------|-------|---------|
| Average temperature (°C)       | -0.0  | 1.6   | 5.3   | 10.6 | 15.4 | 19.2 | 21.8 | 21.8 | 17.7  | 12.3 | 7.0   | 2.2   | 11.2    |
| Maximum temperature (°C)       | 19.2  | 22.3  | 29.1  | 31.2 | 34.3 | 36.6 | 39.2 | 38.7 | 36.4  | 32.8 | 25.6  | 21.4  | 39.2    |
| Minimum temperature (°C)       | -23.6 | -23.8 | -16.5 | -7.2 | -1.0 | 0.5  | 5.0  | 2.2  | -3.7  | -7.1 | -16.7 | -26.3 | -26.3   |
| Average of total rainfall (mm) | 41.4  | 35.8  | 36.9  | 37.2 | 45.4 | 36.0 | 14.6 | 7.9  | 15.3  | 25.2 | 30.4  | 48.1  | 374.2   |
|                                |       |       |       |      |      |      |      |      |       |      |       |       |         |

\*Meteorology Office, Eskisehir, \*\*Long Years 1928-2019

Samples, taken at tillering period, flowering period, maturity period and seed for determining level of amino acids (aspartate, glutamate, asparagine, serine, glutamine, histidine, glycine, thionine, arginine, alanine, tyrosine, cysteine, valine, methionine, tryptophan, phenylalanine, isoleucine, lysine, sarcosine and proline) were gathered. Analyzes were made from fresh leaf samples. For determination of amino acid levels; 5 mL of 0.1 N HCl was added to 5 mg plant sample. The samples were homogenized and dispersed using an IKA Ultra Turrax D125 Basic homogenizer and incubated at 40°C for 12 hours. Then, the homogenized samples were vortexed. After these sample suspensions were centrifuged at 1200 rpm for 50 minutes, the supernatants were filtered using a 0.22 µm Millex Millipore filter. Next, the supernatants were transferred to vials for amino acid analysis using HPLC as described (Henderson et al., 2001). The quantities of amino acids found in the plant samples, including aspartate, glutamate, and asparagine, were determined after 26 minutes of HPLC derivation and are reported as pmol µl-1. Double dendogram was made in NCSS statistic software program.

### **Results and Discussion**

Amino acids are required for vital activities such as protein formation, hormone synthesis and biochemical reactions in humans, animals and plants. Human body is lack of ability to produce 8 essencial amino acids and they must be supplemented. Serving as protein components in plants, amino acids are involved in anabolic and catabolic reactions in the cell and therefore affect a number of physiological processes such as plant growth and development, intracellular pH control, production of metabolic energy or redox power, and resistance to both (Moe, 2013; Zeier, 2013; Fagard et al., 2014; Galili et al., 2014; Pratelli & Pilot, 2014). Besides, amino acids are monitored by genotype x environment interaction. Having distinctive ingredients such as minerals and amino acids, bread wheat plays important role in nutritional scenario of people and it is important for the nutrition of the wheat and the feeding of the community. In addition to this, structural differences in metabolic events, different intensity and speed of them during different developmental periods in wheat cause different levels of amino acids in crops (Wronkowska et al., 2008). Distribution of amino acids in tillering stage of bread wheat genotypes were given in Table 2. While BW5 (Sönmez-01) had the highest levels, BW<sub>7</sub> (Çetinel-2000) included the lowest values in all amino acids. Plant amino acids that respond to different prevailing environmental conditions vary between genotypes. Besides, due to structural differences and different intensity grades of the

metabolic events during different developmental periods, the levels of amino acids seem to be different in bread wheat. In this context, amino acid activities start with germination and increase with increases in plant development. Especially since tillering stage, this increase is manifest itself. In this period, different developmental abilities between genotypes due to features such as photosynthetic activity, dry matter production and mineral matter intake, also cause differences in amino acid levels (Lebeau et al., 2020). Aspartate is important amino acid, triggering metabolic events such as the cycle of tricarboxylic acid causing energy-consuming metabolic events helping defense systems, leading to the production of signal amino acids (Basavarajappa, 2019). Asparagine and proline are important amino acids promoting nitrogen accumulation and help to adjust cellular sugar balance (Haroun et al., 2010).

Another stress amino acid, serine helps to regulate plant tissue against drought, and decrease with increase in proline in drought conditions. In a lot of conditions, proline tends to accumulate tissue and it works for osmoregulation, membrane activity, growth processes and signal of stress conditions (Hare et al., 2003). It was pointed out that the serine plays a regulatory role, especially in plant tissues, and plays a regulatory role between stress and normal conditions (Ros et al., 2014). Histidine is a stress responsive amino acid that reacts with the plant against abiotic stresses. Therefore, this amino acid acts as a positive regulator against stress with abscisic acid, and the amount of histidine increases with increasing stress in the plant. Distribution of amino acids in flowering stage of bread wheat genotypes were given in Table 3.

Amino acid levels in all the genotypes with crop growth to flowering stage reached the highest level. While BW<sub>5</sub> (Sönmez-01) and BW<sub>7</sub> (Cetinel-2000) had the highest and the lowest levels, respectively in all amino acids. Table 3 showed that substantial differences occurred in amino acid levels among genotypes in flowering stage. Glutamine is an amino acid that acts on metabolic development and acts as a marker to regulate N metabolism and plastid metabolism in the cell (Miflin & Habash, 2002). Another amino acid is glycine that it is synthesized and accumulated in plant that coincided stress conditions. Besides, glycine figures to lower the rate of photosynthesis, to protect plasma membranes and the photosynthetic system, to reduce the level and effect of oxygen-dependent free radicals when availability of water are limited (Chen & Murata, 2008). Valine inhibits the degradation of growth-dependent enzymes by reducing the damage of oxygen-dependent free radicals under stress conditions and act vital position in reducing free oxygen-based radicals in the cell.

|                            | 10                           | able 2. Distri | ibution of an | nno acius (pi                    | 1101 μ1-1) III ti | nering stage of i |            | t genotype                    |            |          |
|----------------------------|------------------------------|----------------|---------------|----------------------------------|-------------------|-------------------|------------|-------------------------------|------------|----------|
|                            | Aspartate                    | Glutamate      | Asparagine    | Serine                           | Glutamine         | Histidine         | Glycine    | Thionine                      | Arginine   | Alanine  |
| BW1                        | 4715                         | 2069           | 10189         | 8719                             | 9593              | 4706              | 3898       | 6857                          | 18184      | 14963    |
| BW2                        | 5029                         | 2206           | 10868         | 9300                             | 10232             | 5020              | 4157       | 7314                          | 19396      | 15960    |
| BW3                        | 4557                         | 2000           | 9850          | 8429                             | 9273              | 4549              | 3768       | 6628                          | 17578      | 14464    |
| BW4                        | 4827                         | 2118           | 10432         | 8927                             | 9821              | 4818              | 3990       | 7020                          | 18617      | 15319    |
| BW5                        | 5096                         | 2236           | 11014         | 9425                             | 10369             | 5087              | 4213       | 7412                          | 19656      | 16174    |
| BW6                        | 4759                         | 2088           | 10286         | 8802                             | 9684              | 4751              | 3935       | 6922                          | 18357      | 15105    |
| BW7                        | 4445                         | 1950           | 9607          | 8221                             | 9045              | 4437              | 3675       | 6465                          | 17145      | 14108    |
| BW8                        | 4737                         | 2078           | 10238         | 8761                             | 9638              | 4729              | 3916       | 6889                          | 18270      | 15034    |
| BW9                        | 4557                         | 2000           | 9850          | 8429                             | 9273              | 4549              | 3768       | 6628                          | 17578      | 14464    |
| BW10                       | 4961                         | 2177           | 10723         | 9176                             | 10095             | 4953              | 4102       | 7216                          | 19136      | 15746    |
| BW11                       | 4849                         | 2128           | 10480         | 8968                             | 9867              | 4841              | 4009       | 7052                          | 18703      | 15390    |
| BW12                       | 4782                         | 2098           | 10335         | 8844                             | 9730              | 4773              | 3953       | 6954                          | 18444      | 15176    |
| BW13                       | 5074                         | 2226           | 10966         | 9384                             | 10324             | 5065              | 4195       | 7379                          | 19569      | 16103    |
|                            | Tyrosine                     | Cysteine       | Valine        | Methionine                       | Tryptophan        | Phenylalanine     | Isoleucine | Lysine                        | Sarcosine  | Proline  |
| BW1                        | 1285                         | 2423           | 1138          | 2398                             | 2153              | 2106              | 3200       | 5336                          | 10112      | 137      |
| BW2                        | 1371                         | 2585           | 1214          | 2558                             | 2296              | 2247              | 3414       | 5692                          | 10786      | 146      |
| BW3                        | 1242                         | 2343           | 1100          | 2318                             | 2081              | 2036              | 3094       | 5158                          | 9774       | 132      |
| BW4                        | 1316                         | 2481           | 1165          | 2455                             | 2204              | 2156              | 3277       | 5463                          | 10352      | 140      |
| BW5                        | 1389                         | 2620           | 1230          | 2592                             | 2327              | 2277              | 3459       | 5768                          | 10930      | 148      |
| BW6                        | 1297                         | 2446           | 1149          | 2421                             | 2173              | 2126              | 3231       | 5387                          | 10208      | 138      |
| BW7                        | 1212                         | 2285           | 1073          | 2261                             | 2030              | 1986              | 3018       | 5031                          | 9534       | 129      |
| BW8                        | 1291                         | 2435           | 1144          | 2410                             | 2163              | 2116              | 3216       | 5362                          | 10160      | 138      |
| BW9                        | 1242                         | 2343           | 1100          | 2318                             | 2081              | 2036              | 3094       | 5158                          | 9774       | 132      |
| BW10                       | 1353                         | 2550           | 1198          | 2524                             | 2265              | 2217              | 3368       | 5616                          | 10641      | 144      |
| BW11                       | 1322                         | 2493           | 1171          | 2467                             | 2214              | 2166              | 3292       | 5489                          | 10400      | 141      |
| BW12                       | 1304                         | 2458           | 1154          | 2432                             | 2183              | 2136              | 3246       | 5412                          | 10256      | 139      |
| BW13                       | 1383                         | 2608           | 1225          | 2581                             | 2317              | 2267              | 3444       | 5743                          | 10882      | 147      |
|                            | Aspartate                    | Glutamate      | Asparagine    | Serine                           | Glutamine         | Histidine         | Glycine    | Thionine                      | Arginine   | Alanine  |
| Mean                       | 4799.12                      | 2105.63        | 10372.08      | 8875.70                          | 9764.98           | 4790.57           | 3967.56    | 6979.57                       | 18510.28   | 15231.06 |
| $\mathbf{S}_{\mathrm{ix}}$ | 204.36                       | 89.66          | 441.66        | 377.94                           | 415.81            | 203.99            | 168.95     | 297.20                        | 788.20     | 648.57   |
|                            | Tyrosine                     | Cysteine       | Valine        | Methionine                       | Tryptophan        | Phenylalanine     | Isoleucine | Lysine                        | Sarcosine  | Proline  |
| Mean                       | 1308.27                      | 2466.90        | 1158.63       | 2441.24                          | 2191.13           | 2144.11           | 3257.84    | 5431.88                       | 10292.99   | 139.46   |
| $\mathbf{S}_{\mathrm{ix}}$ | 55.71                        | 105.05         | 49.34         | 103.95                           | 93.30             | 91.30             | 138.73     | 231.30                        | 438.29     | 5.94     |
| BW1:Es-                    | 26. <b>BW<sub>2</sub>:</b> F | Bezostaia-1.   | BW2: Müfitbe  | ev. <b>BW</b> <sub>4</sub> : Alt | tav-2000. BW      | Sönmez-01. E      | We: Sover- | -02. <b>BW</b> <sub>7</sub> : | Cetinel-20 | 00. BWs: |

Table 2. Distribution of amino acids (pmol µl-1) in tillering stage of bread wheat genotypes

 $BW_1$ :Es-26,  $BW_2$ : Bezostaja-1,  $BW_3$ : Müfitbey,  $BW_4$ : Altay-2000,  $BW_5$ : Sönmez-01,  $BW_6$ : Soyer-02,  $BW_7$ : Çetinel-2000,  $BW_8$ : Harmankaya-99,  $BW_9$ : Sultan-95,  $BW_{10}$ : Altay-01,  $BW_{11}$ : Atay-85,  $BW_{12}$ : Özdemir,  $BW_{13}$ : Gerek-79

Moreover, isoleucine is very important for growth and development of biochemical processes in vegetative and generative stages (Mikkelsen & Halkier, 2003). Table 4 shows the distribution of amino acids in maturity stage of bread wheat genotypes. Amino acid levels were determined as lower than tillering and flowering stages. This means that amino acid activity and their levels are significantly related to metabolic activities of crop. Besides being shaped under the influence of the environmental conditions, the more metabolic activities including growth and resistance occur, the more amino acid levels increase. Like two previous stage,  $\mathbf{BW}_5$  (Sönmez-01) and  $\mathbf{BW}_7$  (Çetinel-2000) had the highest and the lowest levels, respectively in all amino

acids. Phenylalanine and lysine cause increase in production of organic matter during vegetative and flowering stages. Besides, both amino acids help to increase resistance of crop against stress conditions (Khalifa *et al.*, 2020). Sarcosine catalyzes many metabolic events such as the regulation of the osmotic balance, the activation of defense systems (Yancey, 2005). Glutamate is very effective in the carbon and nitrogen mechanism in plants. Glutamate, an important signaling molecule in plants, it is an important element for proline biosynthesis in the regulation of osmotic balance in stress conditions (Forde & Lea, 2007). Alanine monitories crop to adjust against stress conditions. It contributes to regulate many metabolic events, including the reduction of many anabolic and catabolic events during stress, the activation of the plant's water prevention systems (Kalefetoğlu & Ekmekçi, 2010). Tyrosine acts as a trigger in the defense-related metabolic cycle of the plant against stress conditions and plays a triggering and catalytic role in defense-related plant metabolic events and the formation of cycles leading to them (Ghelis, 2011). Methionine and tryptophan play a role in physiological and metabolic events related to plant development. Because they play a role in normal crop development, they decrease in the plant with development regressing under stress conditions. Methionine contribute the completion of DNA sequencing, the

formation of proteins, and the completion of many cycles in plants for plant growth, at varying rates in plants (Sairam *et al.*, 2002). Tryptophan employs the production of auxins required for yield. It also plays a role in providing osmotic equilibrium, ion transfer, opening of stomata and removal of heavy metals. It therefore decreases with drought (Ravichandran *el al.*, 2019). Cysteine is an amino acid that plays an active role in plant growth including anabolic and catabolic events; it acts as a warning in the response mechanisms of the plant against many stress conditions (Kalefetoğlu & Ekmekçi, 2010). Table 5 shows the amino acid levels in seeds of bread wheat genotypes.

|                            | Aspartate | Glutamate | Asparagine | Serine     | Glutamine  | Histidine     | Glycine    | Thionine | Arginine  | Alanine  |
|----------------------------|-----------|-----------|------------|------------|------------|---------------|------------|----------|-----------|----------|
| BW1                        | 5375      | 2358      | 11616      | 9940       | 10936      | 5365          | 4443       | 7816     | 20730     | 17057    |
| BW2                        | 5733      | 2515      | 12390      | 10603      | 11665      | 5723          | 4739       | 8338     | 22112     | 18194    |
| BW3                        | 5195      | 2279      | 11228      | 9609       | 10571      | 5186          | 4295       | 7556     | 20039     | 16489    |
| BW4                        | 5502      | 2414      | 11892      | 10177      | 11196      | 5493          | 4549       | 8003     | 21223     | 17463    |
| BW5                        | 5810      | 2549      | 12556      | 10745      | 11821      | 5799          | 4803       | 8449     | 22408     | 18438    |
| BW6                        | 5426      | 2381      | 11726      | 10035      | 11040      | 5416          | 4486       | 7891     | 20927     | 17220    |
| BW7                        | 5067      | 2223      | 10952      | 9372       | 10311      | 5058          | 4189       | 7370     | 19545     | 16083    |
| BW8                        | 5400      | 2369      | 11671      | 9987       | 10988      | 5391          | 4464       | 7854     | 20828     | 17138    |
| BW9                        | 5195      | 2279      | 11228      | 9609       | 10571      | 5186          | 4295       | 7556     | 20039     | 16489    |
| BW10                       | 5656      | 2482      | 12224      | 10461      | 11509      | 5646          | 4676       | 8226     | 21815     | 17951    |
| BW11                       | 5528      | 2425      | 11948      | 10224      | 11248      | 5518          | 4570       | 8040     | 21322     | 17545    |
| BW12                       | 5451      | 2392      | 11782      | 10082      | 11092      | 5442          | 4507       | 7928     | 21026     | 17301    |
| BW13                       | 5784      | 2538      | 12501      | 10697      | 11769      | 5774          | 4782       | 8412     | 22309     | 18357    |
|                            | Tyrosine  | Cysteine  | Valine     | Methionine | Tryptophan | Phenylalanine | Isoleucine | Lysine   | Sarcosine | Proline  |
| BW1                        | 1465      | 2763      | 1298       | 2734       | 2454       | 2401          | 3648       | 6083     | 11527     | 156      |
| BW2                        | 1563      | 2947      | 1384       | 2916       | 2617       | 2561          | 3892       | 6489     | 12296     | 167      |
| BW3                        | 1416      | 2671      | 1254       | 2643       | 2372       | 2321          | 3527       | 5880     | 11143     | 151      |
| BW4                        | 1500      | 2828      | 1328       | 2799       | 2512       | 2458          | 3735       | 6228     | 11802     | 160      |
| BW5                        | 1584      | 2986      | 1403       | 2955       | 2652       | 2596          | 3944       | 6576     | 12460     | 169      |
| BW6                        | 1479      | 2789      | 1310       | 2760       | 2477       | 2424          | 3683       | 6141     | 11637     | 158      |
| BW7                        | 1381      | 2605      | 1223       | 2578       | 2314       | 2264          | 3440       | 5736     | 10868     | 147      |
| BW8                        | 1472      | 2776      | 1304       | 2747       | 2466       | 2413          | 3666       | 6112     | 11582     | 157      |
| BW9                        | 1416      | 2671      | 1254       | 2643       | 2372       | 2321          | 3527       | 5880     | 11143     | 151      |
| BW10                       | 1542      | 2907      | 1366       | 2877       | 2582       | 2527          | 3840       | 6402     | 12131     | 164      |
| BW11                       | 1507      | 2842      | 1335       | 2812       | 2524       | 2470          | 3753       | 6257     | 11856     | 161      |
| BW12                       | 1486      | 2802      | 1316       | 2773       | 2489       | 2435          | 3701       | 6170     | 11692     | 158      |
| BW13                       | 1577      | 2973      | 1396       | 2942       | 2641       | 2584          | 3926       | 6547     | 12405     | 168      |
|                            | Aspartate | Glutamate | Asparagine | Serine     | Glutamine  | Histidine     | Glycine    | Thionine | Arginine  | Alanine  |
| Mean                       | 5471.00   | 2400.41   | 11824.17   | 10118.30   | 11132.08   | 5461.25       | 4523.01    | 7956.70  | 21101.72  | 17363.41 |
| $\mathbf{S}_{\mathrm{ix}}$ | 232.97    | 102.21    | 503.50     | 430.86     | 474.02     | 232.55        | 192.60     | 338.81   | 898.55    | 739.37   |
|                            | Tyrosine  | Cysteine  | Valine     | Methionine | Tryptophan | Phenylalanine | Isoleucine | Lysine   | Sarcosine | Proline  |
| Mean                       | 1491.43   | 2812.26   | 1320.84    | 2783.02    | 2497.89    | 2444.28       | 3713.94    | 6192.34  | 11734.01  | 158.99   |
| $\mathbf{S}_{\mathrm{ix}}$ | 63.51     | 119.75    | 56.24      | 118.51     | 106.36     | 104.08        | 158.15     | 263.68   | 499.66    | 6.77     |

| Table | 3. | Distribution | of | amino acids | s (pn | ıol | uŀ | ·1) | in | flowering | stage | e of | bread | wheat | genotypes. |
|-------|----|--------------|----|-------------|-------|-----|----|-----|----|-----------|-------|------|-------|-------|------------|
|       |    |              |    |             | · (   |     | F  | -,  |    |           |       |      |       |       | B          |

**BW**<sub>1</sub>:Es-26, **BW**<sub>2</sub>: Bezostaja-1, **BW**<sub>3</sub>: Müfitbey, **BW**<sub>4</sub>: Altay-2000, **BW**<sub>5</sub>: Sönmez-01, **BW**<sub>6</sub>: Soyer-02, **BW**<sub>7</sub>: Çetinel-2000, **BW**<sub>8</sub>: Harmankaya-99, **BW**<sub>9</sub>: Sultan-95, **BW**<sub>10</sub>: Alpu-01, **BW**<sub>11</sub>: Atay-85, **BW**<sub>12</sub>: Özdemir, **BW**<sub>13</sub>: Gerek-79

|      | Table 4. Distribution of annuo actus (prior µ-1/ in maturity stage of breat wheat genotypes. |           |            |              |            |               |            |          |           |          |  |  |  |
|------|----------------------------------------------------------------------------------------------|-----------|------------|--------------|------------|---------------|------------|----------|-----------|----------|--|--|--|
|      | Aspartate                                                                                    | Glutamate | Asparagine | Serine       | Glutamine  | Histidine     | Glycine    | Thionine | Arginine  | Alanine  |  |  |  |
| BW1  | 4515                                                                                         | 1981      | 9757       | 8350         | 9186       | 4507          | 3732       | 6566     | 17413     | 14328    |  |  |  |
| BW2  | 4816                                                                                         | 2113      | 10408      | 8906         | 9798       | 4807          | 3981       | 7004     | 18574     | 15283    |  |  |  |
| BW3  | 4364                                                                                         | 1915      | 9432       | 8071         | 8880       | 4356          | 3608       | 6347     | 16832     | 13850    |  |  |  |
| BW4  | 4622                                                                                         | 2028      | 9989       | 8548         | 9405       | 4614          | 3821       | 6722     | 17827     | 14669    |  |  |  |
| BW5  | 4880                                                                                         | 2141      | 10547      | 9025         | 9930       | 4871          | 4034       | 7097     | 18823     | 15488    |  |  |  |
| BW6  | 4558                                                                                         | 2000      | 9850       | 8429         | 9274       | 4549          | 3768       | 6628     | 17579     | 14465    |  |  |  |
| BW7  | 4257                                                                                         | 1868      | 9200       | 7872         | 8661       | 4249          | 3519       | 6191     | 16418     | 13509    |  |  |  |
| BW8  | 4536                                                                                         | 1990      | 9804       | 8389         | 9230       | 4528          | 3750       | 6597     | 17496     | 14396    |  |  |  |
| BW9  | 4364                                                                                         | 1915      | 9432       | 8071         | 8880       | 4356          | 3608       | 6347     | 16832     | 13850    |  |  |  |
| BW10 | 4751                                                                                         | 2085      | 10268      | 8787         | 9667       | 4743          | 3928       | 6910     | 18325     | 15079    |  |  |  |
| BW11 | 4644                                                                                         | 2037      | 10036      | 8588         | 9449       | 4635          | 3839       | 6753     | 17910     | 14737    |  |  |  |
| BW12 | 4579                                                                                         | 2009      | 9897       | 8469         | 9317       | 4571          | 3786       | 6660     | 17662     | 14533    |  |  |  |
| BW13 | 4859                                                                                         | 2132      | 10501      | 8986         | 9886       | 4850          | 4017       | 7066     | 18740     | 15420    |  |  |  |
|      | Tyrosine                                                                                     | Cysteine  | Valine     | Methionine   | Tryptophan | Phenylalanine | Isoleucine | Lysine   | Sarcosine | Proline  |  |  |  |
| BW1  | 1231                                                                                         | 2321      | 1090       | 2297         | 2061       | 2017          | 3065       | 5110     | 9683      | 131      |  |  |  |
| BW2  | 1313                                                                                         | 2475      | 1163       | 2450         | 2199       | 2151          | 3269       | 5451     | 10328     | 140      |  |  |  |
| BW3  | 1190                                                                                         | 2243      | 1054       | 2220         | 1993       | 1950          | 2963       | 4940     | 9360      | 127      |  |  |  |
| BW4  | 1260                                                                                         | 2376      | 1116       | 2351         | 2110       | 2065          | 3138       | 5232     | 9913      | 134      |  |  |  |
| BW5  | 1330                                                                                         | 2509      | 1178       | 2482         | 2228       | 2180          | 3313       | 5524     | 10467     | 142      |  |  |  |
| BW6  | 1242                                                                                         | 2343      | 1100       | 2318         | 2081       | 2036          | 3094       | 5159     | 9775      | 132      |  |  |  |
| BW7  | 1160                                                                                         | 2188      | 1028       | 2165         | 1943       | 1902          | 2890       | 4818     | 9129      | 124      |  |  |  |
| BW8  | 1237                                                                                         | 2332      | 1095       | 2307         | 2071       | 2027          | 3079       | 5134     | 9729      | 132      |  |  |  |
| BW9  | 1190                                                                                         | 2243      | 1054       | 2220         | 1993       | 1950          | 2963       | 4940     | 9360      | 127      |  |  |  |
| BW10 | 1295                                                                                         | 2442      | 1147       | 2417         | 2169       | 2123          | 3225       | 5378     | 10190     | 138      |  |  |  |
| BW11 | 1266                                                                                         | 2387      | 1121       | 2362         | 2120       | 2075          | 3152       | 5256     | 9959      | 135      |  |  |  |
| BW12 | 1248                                                                                         | 2354      | 1106       | 2329         | 2091       | 2046          | 3108       | 5183     | 9821      | 133      |  |  |  |
| BW13 | 1324                                                                                         | 2497      | 1173       | 2471         | 2218       | 2171          | 3298       | 5499     | 10421     | 141      |  |  |  |
|      | Aspartate                                                                                    | Glutamate | Asparagine | Serine       | Glutamine  | Histidine     | Glycine    | Thionine | Arginine  | Alanine  |  |  |  |
| Mean | 4595.64                                                                                      | 2016.35   | 9932.31    | 8499.37      | 9350.94    | 4587.45       | 3799.33    | 6683.63  | 17725.44  | 14585.26 |  |  |  |
| Six  | 195.69                                                                                       | 85.86     | 422.94     | 361.92       | 398.18     | 195.34        | 161.78     | 284.60   | 754.78    | 621.07   |  |  |  |
|      | Tyrosine                                                                                     | Cysteine  | Valine     | Methionine   | Tryptophan | Phenylalanine | Isoleucine | Lysine   | Sarcosine | Proline  |  |  |  |
| Mean | 1252.80                                                                                      | 2362.30   | 1109.50    | 2337.74      | 2098.23    | 2053.20       | 3119.71    | 5201.56  | 9856.57   | 133.55   |  |  |  |
| Six  | 53.35                                                                                        | 100.59    | 47.24      | <u>99.55</u> | 89.35      | 87.43         | 132.84     | 221.49   | 419.71    | 5.69     |  |  |  |
|      |                                                                                              |           |            |              |            |               |            |          |           |          |  |  |  |

Table 4. Distribution of amino acids (pmol µl-1) in maturity stage of bread wheat genotypes

**BW**<sub>1</sub>:Es-26, **BW**<sub>2</sub>: Bezostaja-1, **BW**<sub>3</sub>: Müfitbey, **BW**<sub>4</sub>: Altay-2000, **BW**<sub>5</sub>: Sönmez-01, **BW**<sub>6</sub>: Soyer-02, **BW**<sub>7</sub>: Çetinel-2000, **BW**<sub>8</sub>: Harmankaya-99, **BW**<sub>9</sub>: Sultan-95, **BW**<sub>10</sub>: Alpu-01,**BW**<sub>11</sub>: Atay-85,**BW**<sub>12</sub>: Özdemir,**BW**<sub>13</sub>: Gerek-79

Amino acid levels in seed draw similar trend as seen in previous stages, the highest and the lowest levels of amino acids belonged to  $BW_5$  (Sönmez-01) and  $BW_7$ (Çetinel-2000) in all amino acids. Nitrogen is the cornerstone of the amino acid structures necessary for plant growth and development. The nitrogen use of plants in the tillering period is very low compared to other periods. While determining the yield capacity, the parameters of the number of productive heads per m<sup>2</sup>, number of seeds and weight per head are very important. Therefore, it is important to have sufficient nitrate levels during the tillering and flowering stages to reach maximum potential yield in common wheat. Proteins stored in seeds are estimated ~40-50%. Naturally, less nitrogen is required during the tillering period compared to the flowering and ripening periods.

Studies have shown that plant growth rate and amount are shaped under the influence of genotype x environment.

Especially in the early stage of the plant, the available amount of water and nutrients in the soil significantly affects plant growth. Differences in genotypic capacity, water and nutrient availability and climatic conditions affect plant growth, dry matter production, and therefore amino acid levels. More photosynthesis and assimilate production assign more amino acid levels in crop organs (Khalifa et al., 2020). This explains why amino acid levels are higher in the stages where metabolic and biochemical activities are also higher. Another interesting aspect is that the amino acid changes in all genotypes are the same in every period of development, as well as in the seed. The same genotypes had the highest and lowest amino acid levels in each period and seed. In the light of these results, the change in amino acids, which is the basic building block of proteins and play very important role in biochemical events, is shaped by metabolic activities; the genetic capacity of genotypes shaping crop development, determines to the amino acid

levels in the wheat genotypes. As a means of growth periods, Figure 1 shows changes of amino acids in all development periods as well as in the seed. All amino acids followed very similar trends throughout the developmental periods examined (Fig. 1). Having certain levels during the tillering period, amino acids was found to be higher than the amount in the ripening period and seed. Although, there is a rapid increase in amino acids in tillering period, the highest increase in amino acids reaches its maximum level during flowering period. In the total amount of amino acids, tillering and flowering periods created the more amino acid levels. Therefore, the highest amount of amino acids in the plant was seen from tillering to flowering stage. This trend has gradually decreased from seed to maturity stage. Therefore, amino acid sequence was determined as flowering, tillering, maturation and seed. The reason for the minimum amount of amino acids in the seed indicates that the amino acids remain in the stem as well as the seed of the plant. In this case, the amount of amino acid, which reaches its maximum level until flowering, shows how effective the plant is in development and growth stages. On the other hand, amino acid levels determined by taking the difference between periods (Fig. 2). In Figure 2, as set out in Figure 1, developments are shown more clearly. While the highest amino acid levels occurred during tillering-flowering period, it decreased to the lowest level during the floweringmaturity period. The amount of amino acids occurring in the maturation-seed formation period was obtained at a higher level than the flower-maturity period. This means that the amount of amino acids obtained at a higher level during the tillering- flowering period was produced at a minimal level in flowering-maturity period. But, huge amount of amino acids accumulation occurred during the seed formation that was higher than flowering- maturity period. The highest contribution to the amino acid accumulation in the seed belonged to tillering- flowering period.

|              | Aspartate | Glutamate   | Asparagine | Serine      | Glutamine    | Histidine     | Glycine     | Thionine     | Arginine    | Alanine  |
|--------------|-----------|-------------|------------|-------------|--------------|---------------|-------------|--------------|-------------|----------|
| BW1          | 4153      | 1822        | 8977       | 7682        | 8451         | 4146          | 3434        | 6041         | 16020       | 13182    |
| BW2          | 4430      | 1944        | 9575       | 8194        | 9015         | 4422          | 3663        | 6443         | 17088       | 14061    |
| BW3          | 4015      | 1762        | 8677       | 7425        | 8169         | 4008          | 3319        | 5839         | 15486       | 12742    |
| BW4          | 4252      | 1866        | 9190       | 7864        | 8652         | 4245          | 3516        | 6184         | 16401       | 13496    |
| BW5          | 4490      | 1970        | 9703       | 8303        | 9135         | 4482          | 3712        | 6530         | 17317       | 14249    |
| BW6          | 4193      | 1840        | 9062       | 7755        | 8532         | 4186          | 3466        | 6098         | 16172       | 13307    |
| BW7          | 3916      | 1718        | 8464       | 7243        | 7968         | 3909          | 3238        | 5695         | 15104       | 12429    |
| BW8          | 4173      | 1831        | 9019       | 7718        | 8491         | 4166          | 3450        | 6069         | 16096       | 13245    |
| BW9          | 4015      | 1762        | 8677       | 7425        | 8169         | 4008          | 3319        | 5839         | 15486       | 12742    |
| BW10         | 4371      | 1918        | 9447       | 8084        | 8894         | 4363          | 3614        | 6357         | 16859       | 13872    |
| BW11         | 4272      | 1874        | 9233       | 7901        | 8693         | 4264          | 3532        | 6213         | 16478       | 13558    |
| BW12         | 4213      | 1848        | 9105       | 7791        | 8572         | 4205          | 3483        | 6127         | 16249       | 13370    |
| BW13         | 4470      | 1961        | 9661       | 8267        | 9095         | 4462          | 3695        | 6501         | 17240       | 14186    |
|              | Tyrosine  | Cysteine    | Valine     | Methionine  | Tryptophan   | Phenylalanine | Isoleucine  | Lysine       | Sarcosine   | Proline  |
| BW1          | 1132      | 2135        | 1003       | 2113        | 1896         | 1856          | 2820        | 4701         | 8908        | 121      |
| BW2          | 1208      | 2277        | 1070       | 2254        | 2023         | 1979          | 3007        | 5014         | 9502        | 129      |
| BW3          | 1095      | 2064        | 969        | 2042        | 1833         | 1794          | 2726        | 4544         | 8611        | 117      |
| BW4          | 1159      | 2186        | 1027       | 2163        | 1941         | 1900          | 2887        | 4813         | 9120        | 124      |
| BW5          | 1224      | 2308        | 1084       | 2284        | 2050         | 2006          | 3048        | 5082         | 9629        | 130      |
| BW6          | 1143      | 2155        | 1012       | 2133        | 1914         | 1873          | 2846        | 4746         | 8993        | 122      |
| BW7          | 1068      | <b>2013</b> | <b>945</b> | <b>1992</b> | 1788<br>1005 | 1750          | <b>2658</b> | 4432         | <b>8399</b> | 114      |
| BW0          | 1095      | 2143        | 969        | 2125        | 1903         | 1794          | 2033        | 4725<br>4544 | 8611        | 121      |
| BW10         | 1192      | 2004        | 1055       | 2042        | 1005         | 1953          | 2967        | 4947         | 9375        | 127      |
| BW11         | 1165      | 2196        | 1033       | 2173        | 1951         | 1909          | 2900        | 4835         | 9163        | 127      |
| BW12         | 1148      | 2150        | 1017       | 2173        | 1923         | 1882          | 2900        | 4768         | 9035        | 124      |
| BW12<br>BW13 | 1219      | 2203        | 1079       | 2145        | 2041         | 1997          | 3034        | 5059         | 9587        | 130      |
| <b>D</b> 113 | Asnartate | Glutamate   | Asnaragine | Serine      | Glutamine    | Histidine     | Glycine     | Thionine     | Arginine    | Alanine  |
| Mean         | 4227 99   | 1855.04     | 9137 72    | 7819.42     | 8602.87      | 4220.45       | 3495 39     | 6148 94      | 16307 41    | 13418 44 |
| Six          | 180.04    | 78.99       | 389.10     | 332.97      | 366.33       | 179.71        | 148.84      | 261.83       | 694.40      | 571.38   |
|              | Tyrosine  | Cysteine    | Valine     | Methionine  | Tryptophan   | Phenylalanine | Isoleucine  | Lysine       | Sarcosine   | Proline  |
| Mean         | 1152.57   | 2173.32     | 1020.74    | 2150.72     | 1930.37      | 1888.94       | 2870.13     | 4785.44      | 9068.04     | 122.87   |
| Six          | 49.08     | 92.54       | 43.47      | 91.58       | 82.20        | 80.43         | 122.22      | 203.77       | 386.13      | 5.23     |

**BW**<sub>1</sub>:Es-26, **BW**<sub>2</sub>: Bezostaja-1, **BW**<sub>3</sub>: Müfitbey, **BW**<sub>4</sub>: Altay-2000, **BW**<sub>5</sub>: Sönmez-01, **BW**<sub>6</sub>: Soyer-02, **BW**<sub>7</sub>: Çetinel-2000, **BW**<sub>8</sub>: Harmankaya-99, **BW**<sub>9</sub>: Sultan-95, **BW**<sub>10</sub>: Alpu-01, **BW**<sub>11</sub>: Atay-85, **BW**<sub>12</sub>: Özdemir, **BW**<sub>13</sub>: Gerek-79



Fig. 1. Levels of amino acids (pmol µl-1) in different development periods and seeds of bread wheat genotypes.



Fig. 2. Amino acid (pmol µl-1) levels occured depending on the difference in development periods in bread wheat genotypes

# Conclusion

In this study, the changes in amino acid levels in all stages and seeds showed a similar fluctiations and important differences between both genotypes and development periods. The highest and lowest amino acid levels were determined in BW5 (Sönmez-01) and BW7 (Çetinel-2000) genotypes. While the highest amount of amino acids recorded during tillering and flowering stages, the least amount of amino acids was determined during maturation stage. This means that the more amino acids in tillering and flowering stages had an important effect on speed of amino acid formation and accumulation, thereby the amount of amino acids in the seed. Amino acids, higher in tillering and flowering stages, lower in maturity stage assign that how amino acids are liable for the growth

and development of the plants. In this way, the plant grows and matures. Especially in the maturation period, amino acids that promote maturation and senescence are of great importance. Amino acid levels largely depend on the genotypic capacities, as well as the efficiency and amount of amino acids determine the efficiency of biochemical activities. Therefore, this situation explains the amino acid levels, differences of genotypes from each other to the great extent. On the other hand, plant genetic performance is formed by genotype x environment interactions. This explains that the amount of amino acids in different stages in genotypes is highly affected by environmental conditions and agronomic applications. These differences will shed light on future studies in selecting genotypes with high yield and quality in various breeding studies.

#### References

- Basavarajappa, B.S. 2019. Endocannabinoid System and Alcohol Abuse Disorders. *In Recent Advances in Cannabinoid Physiology and Pathology* (pp. 89-127). Springer, Cham.
- Bouis, H.E. 2003. Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost? *Proceedings of the Nutrition Society*, 62(2): 403-411.
- Fagard, M., A. Launay, G. Clément, J. Courtial, A. Dellagi, M. Farjad, A. Krapp, M.C. Soulié and C. Masclaux-Daubresse. 2014. Nitrogen metabolism meets phytopathology. *J. Exp. Bot.*, 65: 5643-5656.
- Forde, B.G. and P.J. Lea. 2007. Glutamate in plants: metabolism, regulation, and signaling. *J. Exp. Bot.*, 58(9): 2339-2358.
- Galili, G., T. Avin-Wittenberg, R. Angelovici and A.R. Fernie. 2014. The role of photosynthesis and amino acid metabolism in the energy status during seed development. *Front. Plant Sci.*, 5: 447.
- Ghelis, T. 2011. Signal processing by protein tyrosine phosphorylation in plants. *Plant Signaling & Behavior*, 6(7): 942-951.
- Hare, P.D., W.A. Cress and J. Van Staden. 2003. A regulatory role for proline metabolism in stimulating *Arabidopsis thaliana* seed germination. *Plant Growth Regul.*, 39(1): 41-50.
- Haroun, S. A., W.M. Shukry and O. El-Sawy. 2010. Effect of asparagine or glutamine on growth and metabolic changes in Phaseolus vulgaris under in vitro conditions. *Biosci. Res.*, 7(1): 01-21.
- Henderson, J.W., R.D. Ricker, B.A. Bidlingmeyer and C. Woodward. 2001. Rapid, accurate, sensitive and reproducible HPLC analysis of amino acids. Application of Agilent (US); Santa Clara (CA), Publication Part No. 5980-1193E.
- Hildebrandt, T.M., A. Nunes Nesi, W.L. Arau<sup>´</sup> jo and H.P. Braun. 2015. Amino acid catabolism in plants. *Molecular Plant*, 8(11): 1563-1579.
- Kalefetoğlu, T. and Y. Ekmekçi. 2010. Bitkilerde Kuraklik Stresinin Etkileri ve Dayanıklılık Mekanizmaları (Compilation). *Gazi Uni. J. Sci.*, 18(4): 723-740.
- Khalifa, Y.A., A. El-Naem, F. Gamal and M.A. Mahmoud. 2020. Effect of tryptophan and ascorbic acid on yield and some chemical constituents of lupine (*Lupines termis* L.) plants. *Egyptian J. Agron.*, 42(1): 47-61.

- Khan, M.S., E. Ali, S. Ali, W.M. Khan, M.A. Sajjad and F. Hussain. 2014. Assessment of essential amino acids in wheat proteins. A case study. J. Biodiversity and Environmental Sciences, 4: 185-189.
- Lebeau, J., J.P. Efromson and M.D. Lynch. 2020. A review of the biotechnological production of methacrylic acid. *Front. Bioeng. & Biotechnol.*, 8: 207.
- Miflin, B.J. and D.Z. Habash. 2002. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. *J. Exp. Bot.*, 53(370): 979-987.
- Mikkelsen, M.D. and B.A. Halkier. 2003. Metabolic engineering of valine-and isoleucine-derived glucosinolates in Arabidopsis expressing CYP79D2 from cassava. *Plant Physiol.*, 131(2): 773-779.
- Moe, L.A. 2013. Amino acids in the rhizosphere: from plants to microbes. Am. J. Bot., 100: 1692-1705.
- Pratelli, R. and G. Pilot. 2014. Regulation of amino acid metabolic enzymes and transporters in plants. J. Exp. Bot., 65: 5535-5556.
- Ravichandran, S., R. Ragupathy, T. Edwards, M. Domaratzki and S. Cloutier. 2019. MicroRNA-guided regulation of heat stress response in wheat. *BMC Genom.*, 20(1): 488.
- Ros, R., J. Muñoz-Bertomeu and S. Krueger. 2014. Serine in plants: biosynthesis, metabolism, and functions. *Trends in Plant Sci.*, 19(9): 564-569.
- Sairam, R.K., K.V. Rao and G.C. Srivastava. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. *Plant Sci.*, 163(5): 1037-1046.
- Shewry, P.R. 2007. Improving the protein content and composition of cereal grain. J. Cereal Sci., 46(3): 239-250.
- Wronkowska, M., A. Troszynska, M. Soral-Smietana and A. Wolejszo. 2008. Effects of buckwheat flour (*Fagopyrum esculentum* Moench) on the quality of gluten-free bread. *Polish J. Food & Nutr. Sci.*, 58(2):
- Yancey, P.H. 2005. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol., 208(15): 2819-2830.
- Zeier, J. 2013. New insights into the regulation of plant immunity by amino acid metabolic pathways. *Plant Cell Environ.*, 36: 2085-2103.

(Received for publication 22 June 2021)