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Abstract

Drought is one of the major factors affecting plants' growth and development. , The application of plant hormones like
salicylic acid (SA) is known to increase a crop’s resistance to drought stress (DS) and help plants grow under drought
conditions. Therefore, the present study aimed to evaluate the effect of salicylic acid foliar spray (SAFS) on yield and yield
components of foxtail millet under different levels of DS. The present study reports the effect of SA foliar spray on yield
and its components in foxtail millet Basten cultivar under drought stress conditions with three irrigation levels (45%, 65%,
and 85% humidity of field capacity) as the main factor and four SA levels (0 to 2 mM) as the subplot. The results revealed
that the fresh forage yield (36.76 ton/ha) and plant height (89.6 cm) were obtained from control and three mM SAFS
treatments. The highest stem yield (6.971 ton/ha), leaf yield (4.947 ton/ha), grain yield (2.568 ton/ha), panicle length (18.7
cm), seed number per panicle (3670), 1000-seed weight (3.64 g) and several leaves per plant (11.43) were obtained by foliar
spraying of 1.0 mM SA under normal conditions. The maximum harvest index (61.66%) was obtained under moderate stress
conditions and 1.0 mM SA foliar spray. The highest levels of chlorophyll a, b, and total chlorophyll were 6.35, 4.02, and
10.37 mg/WW, respectively, from the treatment without drought stress and the application of 1.0 mM SA. The results
showed that spraying 1.0 and 3 mM SA under stress and normal conditions improved yield components in foxtail millet

Basten cultivar in Sistan weather conditions.
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Introduction

Millets, a group of cereals belonging to the Graminae
family, have been cultivated worldwide as a food and
forage. Pearl millet, Foxtail millet (Setaria italica L.
Beauv), Common millets, and Finger millet are the most
important species of millets. Foxtail millet is commonly
planted annually for human consumption. This plant is an
important food and fodder crop suitable for uncultivated,
marginal, and arid land areas (Niu et al., 2018). This plant
is a broadly planted dryland vegetable with higher
drought endurance and water Use efficiency (WUE) than
other plants such as maize, milo-maize, and Triticum
aestivum (Lata et al., 2013). The plant possesses good
tolerance to drought and salinity stress.

The growth and development of crops are constantly
affected by various environmental factors (Kannepalli et
al., 2021; llyas et al., 2020; Sagar et al., 2022; Nasab et
al.,, 2021). Water scarcity is one of the most crucial
abiotic stresses for plant growth and the most common
environmental stress worldwide (Khan et al., 2021; Fallah
et al., 2021; Najafi et al., 2021). Water is known to cause
survival limitations in arid and semi-arid regions (Gupta
et al., 2020; Khan et al., 2020).

CO, restriction due to the closure of pores resulting
from drought-induced pressure loss causes reduced
photosynthetic enzyme activity and biochemical
components associated with phosphate triose formation.
The reduced CO, level is one of the main limiting
components of photosynthesis (Pandey & Shukla, 2015).

Drought stress (DS) reduces grain yield in three millet
species, including foxtail, common, and pearl, mainly due
to the reduced number of panicles per square meter and
grains per cluster. Water stress reduced millet clusters' seed
yield and grain number (Magsood & Ali, 2007). It also
negatively impacts the millet harvest index by decreasing
seed number per cluster and plant, thus affecting the
biomass yield of nutrifeed (Seghatoleslami et al., 2008).

Applying plant growth regulators such as SA and
jasmonic acid improves the plant’s resistance to abiotic
stresses (Simaei et al., 2011). SA is a phenolic compound.
It is an essential signal molecule in regulating a plant’s
response to abiotic stresses (Simaei et al., 2011). SA
significantly reduces ionic leakage and toxic ion
accumulation in plants, decreasing the effect of
environmental stresses by increasing growth-regulating
hormones such as auxins and cytokinins. Exogenous
application of SA improves seed germination,
photosynthesis, and growth parameters in mustard
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(Brassica juncea L.), tomato, and height in wheat (Hayat
et al., 2005; Habibi, 2012). and corn in water deficit
conditions (Mehrabiyan et al., 2011). Cycocel and SA
spray under optimal and water stress conditions increased
spike length, panicle weight, grain weight per panicle, and
grain yield of Shahriyar wheat (Jiriaie et al., 2009). Under
DS conditions, SA treatment causes stomatal closure and
maintained turgor pressure, resulting in cell elongation,
cell enlargement, and plant growth (Khodary, 2004).
Therefore, the present study aimed to evaluate the effect
of SAFS on yield and yield components of foxtail millet
under different levels of DS.

Materials and Methods

Study site: The research was conducted at the University
of Zabol (latitude 30° 54' N, longitude 61° 41' E) as a split
plot based on an RCBD with three replicates. Before the
experiment, soil type, physical properties, and soil
chemicals were determined (Table 1).

Planting: The dimensions of the main plots and subplots
were 3x14 m and 3x3 m, respectively, with 50 cm
spacing between cultivating rows, 6 cm spacing within
the cultivating rows, 2 m spacing between the replicates,
and 1 m spacing between the main plots, and 50 cm
spacing between subplots. Each subplot included six rows
of planting (Fig. 1). The density was about 333000 plants
per hectare.

Treatments: DS was the primary test factor (45%, 65%,
and 85% humidity of the field capacity), with four levels
of SA treatment as subplots (0, 0.75, 1.5, and 3 mM).
Based on soil analysis results, a combination of chemical
fertilizers, including triple superphosphate (100 kg.ha™,
before planting), potassium sulfate (150 kg.ha™, before
planting), and ammonium sulfate (75 kg.ha™ before
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planting and 75 kg.ha™ at stem elongation stage) was
applied. Planting was carried out following seed
disinfection with Tiram fungicide (2:1000).

Irrigation was at three days intervals until the plant
was completely deployed. Volumetric water contents of
field capacity and wilting point were 28.5% and 11.5%,
respectively. The difference between the moisture of field
capacity and the wilting point was considered as the
available moisture. Volumetric water content was
determined daily, and the irrigation time of different
treatments was obtained. A tanker irrigated each plot after
reaching 45%, 65%, and 85%. The soil moisture was
measured using a Delta-T Devices Ltd UK TDR humidity
meter. Hand weeding was carried out at 3-leaf to 4-leaf
stages (Karimi et al., 2016).

Measurement of traits: Several traits, including fresh
forage yield, stem yield, leaf yield, height, panicle length,
grain yield, seed number per panicle, 1000- seed weight,
and several leaves per plant and harvest index, were
measured. Sampling was carried out in a 1 m? plot area
from two middle rows during millet flowering time (June)
after removing the marginal effect. Samples were
transferred to the laboratory, where fresh forage weight
was immediately measured using an A and D scale
(Japan) with a precision rate of 0.01 g. Then samples were
kept in the oven at the temperature of 74°C for 48 h to get
dried. Leaf and stem weights were measured separately,
and their yield was presented as ton/ha. Ten plants were
randomly selected from each plot during seed maturation.
Plant traits, such as height (using a meter), panicle length
(using a digital caliper), number of leaves per plant,
number of seeds per panicle, 1000 seed weight, and seed
yield, were measured. The harvest index was calculated as
follows:

The ratio of economic yield = Biological yield x 100

Table 1. Physico-chemical analysis of the site experiment soil .

EC organic matter

Minerals (mg.kg™)

Soil texture | pH

(ds/m™) (%) N | P | K Mn | Cu
0.14 8.53 210.25 5.18 1.13

Sandy loam 7.8 1.7 0.85 Zn Fe Mg Ca Zn
0.75 5.91 5/73 0/24 0.75

Fig. 1. The experiment farm of Setaria italica L. that was conducted as a split-plot, based on a randomized complete block design (A and B).
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Measurement of photosynthetic pigments: Chlorophyll
was measured using the Lichtenthal method. An 80%
acetone was used as a control for calibration. A 100 mg of
fresh leaves of the plant in porcelain mortar containing 15
ml of 80% acetone were ground, filtered, and the
chlorophyll a and chlorophyll b contents were read at
663.2 and 646.8 nm, respectively.

Statistical analysis

Data analysis was performed using MSTATC
software that involved the mean based on the Duncan
multi-range test at a 5% probability level.

Results

Fresh forage yield: Analysis of variance (ANOVA)
results showed that DS, SA, and their interactions at a
1% probability level significantly affect fresh forage
yield (Table 2). The mean comparison of interactions
between DS and SA treatment revealed the highest fresh
forage yield (36.76 ton/ha) for control along with 2.0
mM SA treatment and the lowest fresh forage yield
(17.89 ton/ha) under severe stress conditions and SA-
free treatment (Table 3).

Stem yield: Variance analysis results revealed that DS,
SA treatment, and their interaction significantly affect
stem vyield (Table 2). The mean Comparison of
interactions between DS and SA treatment showed the
highest stem yield (6.971 ton/ha) in control 1.0 mM SA
application and the lowest stem yield (2.8 ton/ha) under
severe stress conditions and SA-free treatment (Table 3).

Leaf yield: Variance analysis results (Table 2) showed
that the effect of DS, SA application, and their interaction
on leaf yield is significant at a 1% probability level. The
mean Comparison of interactions between DS and SA
treatment showed the highest leaf yield (4.947 ton/ha) in
control x 1.0 mM SA application and the lowest leaf yield
(1.101 ton/ha) under severe stress conditions, with no SA
treatment (Table 3).

Plant height: DS, SA treatment, and their interactions
significantly impacted plant height (Table 2). The mean
Comparison of interactions between DS and SA treatment
showed the highest plant height (89.6 cm) in control x 2.0
mM SA application and the lowest plant height (42.5 cm)
in severe stress and SA-free treatment (Table 3).

Panicle length: DS, SA treatment, and their interactions
significantly affected panicle length (Table 2). The mean
Comparison of interactions of DS and SA treatment
showed maximum panicle length (18.7 cm) in control x 1.0
mM SA treatment and minimum panicle length (3 cm) in
severe stress conditions and SA-free treatment (Table 3).

Seed yield: The results revealed that DS, SA treatment,
and their interaction on grain yield are significant at a 1%
probability level (Table 2). Mean comparison results
showed the highest grain yield (2.568 ton/ha) in control x
1.0 mM SA application and the lowest grain yield (0.301

ton/ha) under severe stress conditions and SA-free
application (Table 3).

Number of seeds per panicle: Our results on the effect
of DS, SA treatment, and their interactions on the number
of seeds per panicle were significant at a 1% probability
level (Table 2). The mean comparison of DS and SA
treatment showed the highest seeds number per panicle
(3670) in control and 1.0 mM SA treatment and the
lowest seeds number per panicle (1051) under severe
stress and SA-free treatment (Table 3).

1000-seed weight: DS, SA treatment, and their
interactions on 1000-seed weight were significant at a 1%
probability level (Table 2). The mean comparison of
interactions of DS and SA showed the highest 1000-seed
weight (3.64 g) in the control x 1.0 mM SA treatment and
the lowest 1000-seed weight (1.09 g) under DS and SA-
free treatment (Table 3).

Number of leaves per plant: Our results showed that
DS, SA, and their interaction with leaf number per
plant are statistically significant (Table 2). The mean
comparison of interactions between DS and SA showed
the highest number of leaves per plant (11.43) in
control and 1.0 mM SA application and the lowest
number of leaves per plant (8.11) in DS and SA-free
treatment (Table 3).

Harvest index: Harvest index was severely affected by
DS, SA treatment, and their interactions (Table 2). The
mean comparison of interactions between DS and SA
treatment showed the highest harvest index (61.66%) in
medium stress and 1.0 mM SA treatment and the lowest
harvest index (6.32%) in severe stress conditions and
three mM SA treatment (Table 3). ANOVA revealed a
significant impact of DS, SA, and their interaction on
chlorophyll-a (p<0.01) (Table 4). The mean comparison
of DS interaction with SA showed that the highest
chlorophyll-a (6.35 mg / g fresh weight) was obtained
from drought stress-free treatment and application of 1.0
mM SA. The lowest amount (1.51 mg / g fresh weight)
was obtained under severe stress and lack of foliar
application of SA (Table 5).

According to the analysis of the variance of the data
(Table 4), DS, SA, and their interaction with chlorophyll
b were significant(p<0.01). Comparing the mean
interaction effect of DS and SA showed that the highest
amount of chlorophyll b (4.02 mg/g fresh weight) was
obtained from treatment without DS and application of
1.0 mM SA. The lowest amount (0.24 mg / g fresh
weight) was obtained under severe stress and lack of
foliar application of SA (Table 5).

DS, SA, and their interaction on total chlorophyll
were significant (p<0.01) (Table 4). Comparison of
means, the interaction of DS and SA, showed that the
highest total chlorophyll (10.37 mg/g fresh weight) was
obtained from treatment without DS and application of
1.0 mM SA. The lowest amount (1.75 mg/g fresh weight)
was obtained under severe stress and lack of foliar
application of SA (Table 5).
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Table 4. ANOVA of physiological characteristics of foxtail millet Basten cultivar.

Source of variations | df | Chlorophyll a | Chlorophyll b | Total chlorophyll
Replication 2 0.028™ 0.017"™ 0.070™
DS (A) 2 4.142" 4.096" 12.606"
Error (a) 4 0.011 0.131 0.141
SA (B) 3 17.835" 9.835" 49.864"
AxB 6 4.850" 4.883" 16.891"
Error (b) 18 0.096 0.050 0.045
CV (%) - 7.22 10.07 3.28

ns, *, and ** are non-significant and significant at 5 and 1 probability levels, respectively

Table 5. Effects of interactions of DS and SA on physiological characteristics of foxtail millet Basten cultivar.

DS SA Chlorophyll a Chlorophyll b Total chlorophyll
(mM) (mg/g™.fw) (mg/g™*.fw) (mg/g ™ fw)

00 2.31f 0.55f 2.86h

85% Field 0.5 5.12¢ 2.42d 7.54e
capacity 1.0 6.35a 4.02a 10.37a
2.0 5.41bc 3.2c 8.61cd

00 1.94fg 0.27f 2.21i

65% Field 0.5 3.91d 1.82¢ 5.73f
capacity 1.0 5.79b 3.67ab 9.46b
2.0 5.3bc 3.17c 8.47cd

00 1.51g 0.24f 1.75j

45% Field 0.5 3.17e 0.62f 3.799
capacity 1.0 5.42bc 3.41bc 8.83c
2.0 5.27hc 3.02c 8.29d

Different letters indicate significant differences at a=0.05
Discussion

DS is one of the detrimental negative impacts on
plant yield. CO, and closure stomatal are the first
responses to DS in the plant (of course, at first leaves
sections), consequently decreasing photosynthetic activity
(Hepworth et al., 2015).

The seedlings that lack water stress have notable
morphological traits (El-Sabagh et al.,, 2017). The
reduction in growth characteristics of Foxtail millet
Bastan cultivar plants under DS conditions agrees with
the results of (El-Sabagh et al., 2017) in various plants.
Severe drought affects the percentage of leaf weight due
to the shortening of internodes and decreasing the number
of stems per plant (Akhondi & Safaarnejad, 2004). Some
mechanisms like osmotic adjustment, protective proteins
accumulated, and antioxidant materials' defense systems
help plants tolerate stress conditions (Gdrel et al., 2016).

DS reduces the leaf area index so that less water
remains inside the cells, and reduced cell volume decreases
weight (Haghshenas et al., 2020). The effect of drought and
nitrogen fertilizer limitations on the above-ground part of
forage pearl millet (Pennisetum glaucum) showed a
reduction in dry leaf weight and stem wet and dry yields
(Zabet et al., 2014). Plants with height lowered in more DS
conditions are more sensitive to DS, so plant height can be
used as a response type to drought and a criterion to detect
and select tolerant genotypes for dry environmental
conditions (Zou et al., 2007). DS probability reduces the
number, Relative water content, cell division, and
photosynthesis, and these factors affect the vyield
components (EI-Esawi et al., 2018; Gurel et al., 2016).

The number of seeds and the weight of 1000 grains
will usually decrease after being water-deficient. These
factors also were related to the seed yield of foxtail millet.
It is indicated that the irrigation disruption from the
beginning of the flowering period reduces the number of
seeds per panicle (Khomari et al., 2008). Water deficit
stress diminished pod length in the major and secondary
branches of cowpea, while the maximum pod length was
observed in full irrigation treatment (Pakmehr et al., 2011).

SA is an effective signaling molecule that regulates
plant tolerance to plant stresses (Wang et al., 2010). It
regulates plants' physiological and biochemical properties
and plant growth, and fruit yield, in plants (Liu et al.,
2015). SA is a vital hormone for chlorophyll content
(Fariduddin et al., 2003), carotenoid composition (Gao et
al., 2012), and stomatal closure (Khokon et al., 2011).

SA increases the abscisic acid content, which causes
more accumulation of proline, an amino acid required for
the plant's defense system against stress. Accumulation of
proline in cells is often observed under drought-stress
conditions. Additionally, SA can improve nonenzymatic
antioxidant and enzymatic activity like CAT, POX, and
PPO. It also plays a central role in enhancing plant growth
under drought stress by increasing plant tolerance to stress
conditions and decreasing oxidative stress (Mutlu et al.,
2016). It is indicated that the SA has significantly reduced
the effects of salinity on the morphological traits by
increasing the branch numbers, plant height, FW, and DW
(El-Esawi et al., 2017).

Spraying SA increased biomass in soybean (Eraslan
et al., 2007), which seems to be due to the antioxidant



activity of this compound in the cell membrane. SA
treatment improves the lignin content in the cell wall,
which can be a critical factor in increasing plant biomass
under DS conditions (Vafabakhsh et al., 2008). Foliar
spraying of SA in corn increased leaf area, leaf number,
height, plant dry weight, and root (Khodary, 2004). SA
probably improves nutrient absorption under DS and
salinity, increasing the plant height and growth rate
(Eraslan et al., 2007). These effects of SA may be due to
the more significant role of SA in water storage in plant
cells and the increase in enzymatic activity under stress
conditions (Pirasteh-Anosheh et al., 2015), consequently
increasing yield characteristics. The application of SA
also changes the hormonal balance in the plant and
increases auxin and cytokinin levels in non-stress
conditions. Furthermore, under stress conditions, this
substance increases the amount of auxin and ABA while
reducing cytokine reduction (Shakirova et al., 2003).

Research on the effect of SA treatment on various
crop and yield components under drought stress has been
reported to improve growth, vital processes in plants,
antioxidant mechanisms, and defense systems (Ebrahimi
& Jafari, 2012; Rafique et al., 2023; Sangwan et al.,
2022; Khan et al., 2022; Tanveer et al., 2023).

Studies on the effect of SA on the mung bean plant
(Ali & Mahmoud, 2013) and peanut (Karimian et al.,
2015) revealed that SA level significantly increased grain
yield vis-a-vis control. It also helps in maintaining the
membrane under DS. The effect of DS and foliar SA
spray-on black cumin has indicated that the maximum
seed number per foliquol (66.33) was obtained in 90%
field capacity and 10 uM SA treatment.

Leaf development is one of the most sensitive
processes affected by water deficiency. Studies show that
DS makes cells smaller and lessens the number of cells
produced by meristems (Tardieu et al., 2000). Thus, it is
natural that plants' metabolic processes diminish under
water stress conditions, and in turn, growth indices reduce.
Assessment of different amounts of soil moisture and SA
levels on enzymatic activity and morphophysiological
characteristics of alfalfa plant showed the highest number
of leaves per plant in field capacity of 100%. Selection
based on leaf area and plant biomass under DS conditions
increased yield potential in maize (Pandey et al., 2017).
The harvest index is one of the most critical physiological
indices showing the percentage of photosynthetic transfer
from the plant to its grains, and it varies during drought
(Zecevic & Knezevic, 1997). In each environmental
condition, seed yield per plant results from biomass and
harvest index (Hegde et al., 2007). During the canola stem
elongation stage, DS increased the harvest index as
dehydration stress during stem elongation affects the
production of dry matter straw more than grain yield
(Wright et al., 1988).

Chlorophyll content in living plants is critical in
maintaining photosynthetic capacity (Tommasino et al.,
2018); however, it is affected by DS. The main factor that
reduces photosynthesis during dehydration is reducing
available CO,, which limits the diffusion through the
stomata and mesophyll (Posch et al., 2019). It is reported
(Liang et al., 2020) that the application of 1.5 mM SA
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increased chlorophyll a, b, and total (Table 5). It has been
proven that SA produces a comprehensive metabolic
response in plants and affects their photosynthetic
properties and water relations. It has also been reported
that immersion of wheat seeds in SA under non-stress
conditions increased pigments(Fariduddin et al., 2003).

Conclusion

The results showed that while DS poses negative
impacts on foxtail millet yield and its components, SA
plays a positive role in modulating the effects of DS and
helps in promoting plant growth and yield parameters.
Therefore, it can be stated that irrigation at 85% of the
humidity of field capacity and 1.5 and 3 mM SA
treatment can produce a good yield in Sistan's climate and
similar weather conditions.
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