COMBINING ABILITY ANALYSIS IN SOYBEAN THROUGH NORTH CAROLINA MATING DESIGN II UNDER VARYING WATER LEVELS AND TEMPERATURE AT MATURITY STAGE

BAREERA NASIR ${ }^{1 *}$, HUMERA RAZZAQ ${ }^{1}$, HAFEEZ AHMAD SADAQAT ${ }^{1}$ AND MUHAMMAD ASHFAQ WAHID ${ }^{2}$
${ }^{l}$ Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad-38040, Pakistan
${ }^{2}$ Department of Agronomy, University of Agriculture, Faisalabad-38040, Pakistan
*Corresponding author's email: bareeranasir64gmail.com

Abstract

Soybean is a climate sensitive crop. Water and temperature is crucial factors for its cultivation. The objective of this study was to evaluate the performance of eight soybean parents and their crosses under various levels of water and temperature at maturity stage. Fifteen crosses resulting from North Carolina Mating Design II and their parents were evaluated for maturity traits under three levels of water and temperature i.e. $\mathrm{T}_{0}=$ Water level: 4 irrigations + Average weekly temperature $=36.50^{\circ} \mathrm{C}, \mathrm{T}_{1}=$ Water level: 3 irrigations + Average weekly temperature $=33.83^{\circ} \mathrm{C}$ and $\mathrm{T}_{2}=$ Water level: 2 irrigations + Average weekly temperature $=29.80^{\circ} \mathrm{C}$. Recorded data were subjected to analysis of variance. Existence of genetic variability among most of the entries showed that this germplasm can be further used for breeding programme in soybean to improve yield and stability. General combining ability (GCA) effects of the parents and specific combining ability (SCA) effects of crosses were estimated. Our findings reveal that selected parents (17444, 24567 and 24581) and cross combinations $(17444 \times 24581$ and $24567 \times 24576)$ are the most promising for breeding soybeans under different climatic conditions and may be further evaluated to study their worth as potential parents and crosses.

Key words: Analysis of variance, General combining ability (GCA), Specific combining ability (SCA), Maturity traits, Different climatic conditions.

Introduction

Change in climate could cause reduction in yield of crops up to 5% by 2030 and up to 30% by 2080 (Havlík et al., 2015). It is important to assess level of impact of spatial and temporal variability in climate on crops (Cure and Acock, 1986). Thus, Plant breeder has to develop plants with optimum combination of different adaptive characters than plants with single adaptive characters and it is complex and difficult.

The demand for energy and protein rich food is high in developing countries. Soybean being the most important source of both vegetable oil and protein concentrates occupies premier position among many crops. Soybean (Glycine max L.) is known as "Golden Beans" that is also called "meat that grows on plant" because its seed contains 40% protein on an average (Ali et al., 2013). Food and agriculture organization classified it, as an oilseed crop rather than a pulse crop due to extensive use of its oil i.e. $16-23 \%$ in its seed (Hamayun et al., 2010; Amjad, 2014).

Soybean is a climate sensitive crop. Unavailability of locally developed, well adapted and climate specific cultivars is the major problem in tropical areas. Water and temperature are crucial factors for its cultivation. It develops under wide temperature ranges but regions with very low and high mean monthly temperature i.e. below $20^{\circ} \mathrm{C}$ and above $40^{\circ} \mathrm{C}$ are not suitable for production of soybean. Temperature effects on soybean germination as with $1^{\circ} \mathrm{C}$ increase in temperature, there is 99% decrease in germination (Tayagi \& Tripathi, 1983; Khalil et al., 2010). Germination of seeds can occur at temperature ranges from $5^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ but rapid germination occur around $30^{\circ} \mathrm{C}$ (Berlato, 1981).

Soybean has two critical periods with respect to requirement of water: planting to emergence and pod fill. Deficit or excess water condition during germination can influence uniformity in number and distribution of plants/area (Sionit \& Kramer, 1977). Water content should not less than 50 percent and not more than 85 percent during germination. During period of pod filling water deficit condition is more harmful than flowering stage. During critical seed development period an adequate water supply must be available for the achievement of maximum yield.

Therefore, development and evaluation of new soybean cultivars to enhance its stability under changing climate could be a permanent solution. Due to selfpollination and narrow genetic base of soybean, North Carolina mating design II is best choice in it for the development of breeding material. Comstock \& Robinson (1948) developed this mating design. In this each male is crossed with same set of females. It is also helpful for the measurement of combining ability effects (Hallauer et al., 2010; Acquaah, 2012). Combining ability is crucial tool in plant breeding for evaluation of newly developed breeding material. General combining ability (GCA) is effective tool for the selection of parents based on the performance of their progenies, usually F_{1} (Salami \& Agbowuro, 2016). A higher GCA effects indicated less environmental effects and higher heritability and large adaptability. It may also result in higher achievement in selection and less gene interaction (Rukundo et al., 2017; Zeinab \& Helal, 2014).

Specific combining ability (SCA) indicates how much performance of the cross deviates from performance of parents that is predicted from GCA effects (Su et al., 2017). High SCA of crosses where both parents
are good general combiners may be ascribed to additive \times additive gene action and thus being fixable. High SCA from the crosses between good and poor combiners may be attributed to epistatic effect of poor combiner and additive effect of good combiner. High SCA from low \times low crosses may be due to non-allelic and dominance \times dominance type of interaction and thus being non-fixable (Shikano et al., 2000; Adebambo, 2011; Wang et al., 2014). It is also helpful in the reorganization of promising hybrids and selected on their prediction of GCA effects.

Keeping all above factors in consideration, objective of this study was to evaluate the performance of eight soybean parents and their crosses under various combinations of water and temperature treatments as these were never appeared to be tested before for their breeding potential per se in specific combinations (SCA) and their overall performance in crosses (GCA). These parents and crosses would be a valuable source of germplasm to enhance stability of soybean under different climatic regimes of temperature and water.

Materials and Methods

The experimental material comprised of eight soybean accessions (Five female parents and three male parents). These accessions were previously screened from eighty accessions at seedling stage. For screening, two independent experiments were conducted to select common parents under temperature treatments ($\mathrm{T}_{0}=$ $30^{\circ} \mathrm{C}, \mathrm{T}_{1}=35^{\circ} \mathrm{C}$ and $\mathrm{T}_{2}=40^{\circ} \mathrm{C}$) and water treatments ($\mathrm{T}_{0}=$ 100% water holding capacity, $\mathrm{T}_{1}=60 \%$ water holding and $\mathrm{T}_{2}=40 \%$ water holding capacity). Selected parents were then hybridized using North Carolina Mating Deign II (Table 1). Hybridization experiment was conducted in the research area of the Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan using through controlled pollination in autumn, 2019. Row to row and plant to plant distance were maintained 75 cm and 25 cm respectively. All agronomic practices were applied during growth period of soybean. Seeds of crosses were harvested and stored for the next season.

Table 1. North Carolina II mating scheme showing parents and their crosses in soybean.

Parents	Female parents						
			$\mathbf{1 7 4 1 8}$	$\mathbf{1 7 4 3 4}$	$\mathbf{1 7 4 4 4}$	$\mathbf{2 4 5 6 6}$	$\mathbf{2 4 5 6 7}$
Male	24576	17418×24576	17434×24576	17444×24576	24566×24576	24567×24576	
	24581	17418×24581	17434×24581	17444×24581	24566×24581	24567×24581	
	24582	17418×24582	17434×24582	17444×24582	24566×24582	24567×24582	

Entries including crosses and their parents were evaluated with Randomized Complete Block Design using two factors factorial arrangements with three replications in field at maturity stage in the next growing season. Experiment was conducted in the research area of the Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan. Row to row and plant to plant distance were maintained 75 cm and 25 cm respectively. Three different water levels were applied. Crop grown in a sunny and at high temperature needs more water than the same crop grown at low temperature. Weather forecast was kept in consideration so that sowing can be done at three different temperatures in combination with water level. Following three treatments were applied.
$\mathbf{T}_{\mathbf{0}}=$ Water level: 4 irrigations (i.e. 3 to 4 weeks after germination, initiation of flowering, pod formation stage and seed development stage) + Sowing on August 2, 2020 (Average weekly temperature= $36.50^{\circ} \mathrm{C}$).
$\mathbf{T}_{\mathbf{1}}=$ Water level: 3 irrigations (Irrigation was withdraw after pod formation) + Sowing on August 15, 2020 (Average weekly temperature $=33.83^{\circ} \mathrm{C}$).
$\mathbf{T}_{\mathbf{2}}=$ Water level: 2 irrigations (Irrigation was withdraw after initiation of flowering) + Sowing on August 31, 2020 (Average weekly temperature $=29.80^{\circ} \mathrm{C}$).

Data of three random tagged plants per treatment per replication of each entry were recorded on maturity traits i.e. plant height (PH) (in cm from ground level to the top of the tagged plants with the help of meter rod), plant fresh weight (PFW) (in grams by using weight balance Setra-BL 4105), plant dry weight (PDW) (dried samples at $70^{\circ} \mathrm{C}$ in an oven (Model= $655-\mathrm{F}$) until a constant weight is achieved. The dried plant weights were recorded in grams using weight balance Setra-BL 4105), number of nodes/plant (NN/P), number of seeds/pod (NS/P), number of pods/plant (NP/P), oil content (OC) and protein content (PC) (in \% through near infrared reflectance spectroscopy (Model= MPW-352), days to 50% flowering (DOF) (from sowing date to the day when 50% of plants of each tagged plant started flowering), days to 50% maturity (DOM) (from sowing date to the day when 50% of plants of each tagged plant reached to maturity), electrolyte membrane leakage (EML) (in \% according to Lutts et al., 1996), proline content (Pl.C) (in $\mu \mathrm{g}$ according to bates et al., 1973), leaf temperature (LT) (in ${ }^{\circ} \mathrm{C}$ with temperature gun), chlorophyll content (CC) (in mg by using chlorophyll meter SPAD-502), leaf area (LA) (Leaf width $(\mathrm{cm}) \times$ leaf length (cm)) and 100 seed weight (100SW) (in grams by using electronic balance Setra-BL 4105).

Recorded data were subjected to analysis of variance for North Carolina Mating Design II (Comstock and Robinson, 1948). When significant differences were detected, data were subjected to estimate general combining ability (GCA) of parents and specific combining ability (SCA) of crosses using following formulas.

Estimation of GCA effects

Female parents: gi $=\{(\mathrm{xj} . / \mathrm{mr})-(\mathrm{x} . . . / \mathrm{fmr})\}$
Male parents: $\mathrm{gm}=\{(\mathrm{x} . \mathrm{j} . / \mathrm{fr})-(\mathrm{x} . . . / \mathrm{fmr})\}$
where,
$\mathbf{f}=$ Number of female parents
$\mathbf{m}=$ Number of male parents
$\mathbf{r}=$ Number of replications
$\mathbf{x i} . .=$ Total number of F_{1} resulting from crossing ith female
parent with all the male parents
$\mathbf{x} . . .=$ Total of all the crosses
Standard error (female parents)
(Error mean sum of square/rm) ${ }^{1 / 2}$
Standard error (male parents)
(Error mean sum of square/rf) ${ }^{1 / 2}$

Results

Analysis of variance: Analysis of variance of soybean entries for maturity traits for North Carolina Mating Design II under various combinations of water and temperature treatments is presented in (Table 2). Sources of variations i.e. parents, parents vs crosses, crosses, female parents, male parents and interaction of male and female showed significant differences for most of the traits under all treatments. Existence of genetic variability among most of the entries showed that this germplasm can be further used for breeding programme in soybean to improve yield and stability.

General combining ability (GCA) effects of parents: General combining ability effects of parents for maturity traits under $\mathrm{T}_{0}=$ Water level: 4 irrigations + Average weekly temperature $=36.50^{\circ} \mathrm{C}$ are presented in (Table 3). Among female parents, 24567 had positive and significant GCA effects for most of the traits followed by 17444 and 24566. Positive and significant GCA effects were observed in 24567 for PFW, LT, NP/P, PC, Pl.C, EML, DOF and DOM. 17444 had positive and significant GCA effects for PFW, PDW, LA, CC, PC, Pl.C and EML. Positive and significant GCA effects were observed in 24566 for CC, EML, DOF, NNP, 100SW and DOM. Among male parents, 24582 had positive and significant GCA effects for most of the traits i.e. PFW, LT, NP/P, EML, DOF, DOM, 100SW and NN/P.

General combining ability effects of parents for maturity traits under $\mathrm{T}_{1}=$ Water level: 3 irrigations + Average weekly temperature $=33.83^{\circ} \mathrm{C}$ are presented in (Table 4).

Among female parents, 17444 had positive and significant GCA effects for most of the traits followed by 24567 and 24566. Positive and significant GCA effects were observed in 17444 for PH, PDW, PFW, CC, LT, NS/P and PC. 24567 had positive and significant GCA effects for PH, PFW, OC, Pl.C, EML and DOM. Positive and significant GCA effects were observed in 24566 for CC, NP/P, 100SW, Pl.C, DOM and NN/P. Among male parents, 24581 had positive and significant GCA effects for most of traits i.e. PH, PDW, CC, LT, NP/P, PC, Pl.C, EML and NN/P.

General combining ability effects of parents for maturity traits under $\mathrm{T}_{2}=$ Water level: 2 irrigations +

Estimation of SCA effects

$\mathbf{s i}=\{(\mathbf{x i j}.) / \mathbf{r})-(\mathbf{x i} . / \mathbf{m r})-(\mathbf{x j} . . / \mathbf{f r})+\mathbf{x} . . . / \mathbf{f m r}$
where,
$\mathbf{x i j}=$ Total of F_{1} resulting from crossing ith female parent with jth male parent
$\mathbf{x i}=$ Total of all the crosses of ith female parent with all male parents
$\mathbf{x j}=$ Total of all the crosses of $\mathbf{j t h}$ male parent with all female parents
Standard error (crosses)
(Error mean sum of square/r) ${ }^{1 / 2}$

Average weekly temperature $=29.80^{\circ} \mathrm{C}$ are presented in (Table 5). Among female parents, 17444 had positive and significant GCA effects for most of the traits followed by 24567. Positive and significant GCA effects were observed in 17444 for PH, PFW, PDW, CC, LT, PC, NS/P, EML and DOF. 24567 had positive and significant GCA effects for PFW, LA, OC, 100SW, DOF and DOM. Among male parents, 24581 had positive and significant GCA effects for most of the traits i.e. PH, PDW, CC, LT, NP/P, PC, Pl.C and 100SW.

Hence, on the basis of general combining ability effects of parents under various treatments of water and temperature at maturity stage, 17444, 24567 and 24581 were selected as best general combiners.

Specific combining ability effects of crosses: Specific combining ability effects of crosses for maturity traits under $\mathrm{T}_{0}=$ Water level: 4 irrigations + Average weekly temperature $=36.50^{\circ} \mathrm{C}$ are presented in (Table 6). Cross 24567×24576 had positive and significant specific combining ability effects for most of the traits followed by 17444×24581 and 17434×24581. Cross 24567×24576 had positive and significant SCA effects for PDW, CC, LT, NP/P, NS/P, Pl.C, PC, EML, DOM, DOF and NN/P. Positive and significant SCA effects were observed in cross 17444×24581 for PH, PFW, PDW, 100SW, LA, CC, LT, PC, Pl.C and DOF. Cross 17434×24581 had significant and positive SCA effects for $\mathrm{PH}, \mathrm{NP} / \mathrm{P}$, OC, PC, Pl.C, DOF, DOM and NN/P.

Specific combining ability effects of crosses for maturity traits under $\mathrm{T}_{1}=$ Water level: 3 irrigations + Average weekly temperature $=33.83^{\circ} \mathrm{C}$ are presented in (Table 7).

Crosses 24567×24576 and 17444×24581 had positive and significant specific combining ability effects for most of the traits followed by 17418×24576 and 24566×24581. Positive and significant SCA effects were observed in cross 24567×24576 for 100 SW, PH, PDW, CC, NP/P, Pl.C, EML, DOF and NN/P. Cross 17444×24581 had positive and significant SCA effects for PH, PFW, PDW, LA, CC, Pl.C, PC, DOF and 100SW. Cross 24566×24581 had significant and positive SCA effects for PH, PFW, NP/P, CC, PC, EML and DOM. Positive and significant SCA effects were observed in cross 17418×24576 for PH , PFW, PDW, LA, PC, NN/P and 100SW.
Table 2. Mean squares from analysis of variance for maturity traits in soybean under various water and temperature treatments.

SOV	DF	PH	PFW	PDW	LA	CC	LT	NP/P	NS/P	OC	PC	PL.C	EML	DOF	DOM	NN/P	100SW
Treatment 0 ($\mathrm{T}_{0}=$ Water level: 4 irrigations + Average weekly temperature $=36.50^{\circ} \mathrm{C}$)																	
Replications	2	114	3.91	1.30	5.60	1.29	1.06	2.69	3.36	20.11	2.66	0.00	2.77	12.24	2.46	0.00	0.00
Entries	22	77.4**	237.7**	28.1**	16.7**	4.85**	9.01**	5.37*	1.6**	16.16	11.8**	0.01**	27.56**	48.24**	124.96**	1.65**	0.19**
Parents	7	50.8*	336.0**	31.1**	15.2**	3.11**	11.7**	5.63*	0.69	23.16	13.1**	0.01**	16.86**	67.26**	159.34**	1.53**	0.13**
Parents vs Crosses	1	224**	16.2	93.6**	35.9**	1.35	0.01	12.1*	0.10	0.44	6.27	0.01**	19.45*	46.54**	141.77**	1.51**	0.02**
Crosses	14	80.1**	204.4**	21.9**	16.1**	5.97**	8.2**	4.76	2.2**	13.79	11.5**	0.01**	33.50**	38.85**	106.57**	1.73**	0.23**
Female parents	4	136.2**	277.4**	35.2**	7.42	5.57**	5.76	4.06	2.5**	23.27	9.69**	0.01**	19.38**	18.46**	73.70**	4.33**	0.35**
Male parents	2	14.1	105.3**	17.1**	5.55	2.26*	26.9**	3.80	2.2*	2.49	12.8**	0.00	32.17**	73.07**	323.49**	0.76**	0.13**
Female \times Male	8	68.6*	192.9**	16.5**	23.0**	7.10**	5.02	5.34*	2.6*	11.87	12.2**	0.02**	40.89**	40.48**	68.78**	0.66**	0.19**
Error	44	20.5	6.29	2.50	2.84	0.46	3.01	2.13	0.63	24.29	2.11	0.00	3.00	1.73	1.72	0.01	0.00
Treatment 1 ($\mathrm{T}_{1}=$ Water level: 3 irrigations + Average weekly temperature $=33.83{ }^{\circ} \mathrm{C}$)																	
Replications	2	42.0	1.69	1.54	0.05	0.56	1.42	12.4	3.36	0.61	0.91	0.00	2.77	5.27	0.13	0.03	0.00
Entries	22	76.2**	186.1**	23.1**	20.7**	4.11**	3.4**	48.2**	1.6**	10.75	14.3**	0.01**	27.56**	42.87**	116.26**	0.14**	0.10**
Parents	7	38.3**	237.6**	24.4**	18.4**	3.01**	7.05	67.2**	0.69	7.98	12.3**	0.01**	16.86**	64.36**	149.06**	0.21**	0.18**
Parents vs Crosses	1	383.4**	19.3	66.1**	2.85	0.02	4.77	46.5**	0.10	4.17	0.62	0.00	19.45*	3.42*	85.83**	0.13**	0.25**
Crosses	14	73.2**	172.2**	19.3**	23.2**	4.95**	4.81	38.8**	2.5**	12.60	16.2**	0.01**	33.50**	34.95**	102.04**	0.11**	0.05**
Female parents	4	104.7**	193.4**	31.2**	24.3**	4.96**	8.36	18.4**	2.4**	7.66	11.5**	0.01**	19.38**	26.69**	73.08**	0.08**	0.04**
Male parents	2	45.9*	128.2**	10.9**	8.5**	1.62**	3.6**	73.0***	2.2*	1.61	53.0**	0.01**	32.17**	11.55**	293.73**	0.17**	0.20**
Female \times Male	8	64.4**	172.6**	15.5**	26.9**	5.78**	21.6	40.4**	2.6*	17.83	9.4**	0.01**	40.89**	44.93**	68.60**	0.11**	0.02**
Error	44	11.7	6.70	0.78	1.15	0.27	7.28	1.73	0.63	8.52	0.93	0.00	3.00	0.56	1.29	0.02	0.00
Treatment 2 ($\mathrm{T}_{2}=$ Water level: 2 irrigations + Average weekly temperature $=\mathbf{2 9 . 8 0}{ }^{\circ} \mathrm{C}$)																	
Replications	2	33.7	0.16	0.86	1.95	0.24	1.42	0.33	0.32	1.09	0.14	0.00	11.78	1.36	1.29	0.03	0.00
Entries	22	62.7**	179.8**	20.4**	24.4**	3.07**	6.7**	9.5**	1.7**	14.7**	11.1**	0.04**	120.95**	46.26**	121.19**	0.14**	0.06**
Parents	7	37.7*	236.8**	21.2**	22.7**	2.77**	2.93	7.9**	0.6*	9.90*	12.0**	0.03**	85.31**	63.97**	149.66**	0.21**	0.06**
Parents vs Crosses	1	333.2**	47.9**	56.8**	0.79	0.40	13.7*	8.6**	0.09	29.9**	7.82**	0.51**	159.63**	91.37**	156.63**	0.13**	0.50**
Crosses	14	55.9*	160.4**	17.3**	27.1**	3.42**	8.08**	10.0**	1.6**	16.0**	11.0**	0.01**	136.00**	34.19**	104.43**	0.11**	0.02**
Female parents	4	78.3**	182.8**	29.0**	44.7**	3.57**	1.82	6.4**	0.9**	10.6*	11.5**	0.01**	257.55**	29.31**	73.07**	0.08**	0.02**
Male parents	2	55.9*	123.3**	12.2**	11.6**	2.46**	9.8*	30.6**	3.5**	0.66	33.9**	0.01**	24.08*	12.21**	314.08**	0.17**	0.05**
Female \times Male	8	44.7*	159.0**	12.8**	22.2**	3.59**	10.8*	7.52**	1.5**	22.0**	6.3**	0.01**	103.21**	42.12**	67.69**	0.11**	0.02**
Error	44	15.64	3.624	0.56	2.59	0.23	2.19	0.99	0.21	3.78	0.69	0.00	5.45	0.46	2.46	0.02	0.00

**= Significant at 0.01 probability level *=Significant at 0.05 probability level
SOV = Sources of variation, DF= Degrees of freedom, PH= Plant height, PFW= Plant fresh weight, PDW= Plant dry weight, LA= Leaf area, CC=Chlorophyll content, LT= Leaf temperature, $\mathrm{NP} / \mathbf{P}=$ Number of pods/plant, $\mathrm{NS} / \mathbf{P}=$ Number of seeds $/$ pod, $\mathrm{OC}=\mathbf{O i l}$ content, $\mathrm{PC}=$ Protein content, $\mathrm{PI} . \mathrm{C}=$ Proline content, EML=Electrolyte membrane leakage, DOM= Days to $\mathbf{5 0 \%}$ maturity, DOF = Days to $\mathbf{5 0 \%}$ flowering, NN/P= Number of nodes/plant, 100SW=100 seed weight

Accessions	PH	PFW	PDW	LA	CC	LT	NP/P	NS/P	OC	PC	Pl.C	EML	DOF	DOM	NN/P	100SW
Female parents																
17418	-0.78	-0.36	2.28	0.65	-0.73	-0.38	-0.45	-0.01	2.08	-1.74	-0.05	-2.65	-2.40	-2.84	-0.83	-0.14
17434	-5.56	-5.22	-1.88	0.27	-0.16	0.07	0.53	0.26	-1.53	0.33	0.01	-3.06	0.60	0.38	1.00	0.24
17444	5.11	7.95	1.93	0.96	0.54	-1.11	-0.29	0.67	-1.07	0.61	0.01	1.07	-0.18	-3.01	-0.35	-0.23
24566	-0.44	-5.05	-1.65	-1.16	1.06	0.42	-0.68	-0.13	-0.84	-0.09	-0.01	1.36	1.21	2.27	0.33	0.16
24567	1.67	2.69	-0.69	-0.72	-0.71	1.00	0.89	-0.78	1.36	0.89	0.03	3.28	0.77	3.21	-0.15	-0.03
Standard error	1.51	0.83	0.52	0.56	0.22	0.57	0.48	0.26	1.64	0.48	0.00	0.48	0.43	0.43	0.03	0.00
Male parents																
24576	0.11	-2.61	0.28	0.45	-0.39	-1.47	-0.45	0.40	0.42	-0.52	0.00	0.34	-2.52	-4.43	-0.15	-0.09
24581	0.91	-0.07	0.90	0.24	0.39	0.39	-0.10	-0.33	-0.03	1.07	0.00	-1.24	0.94	-0.40	-0.11	0.00
24582	-1.02	2.68	-1.18	-0.69	0.00	1.08	0.54	-0.06	-0.39	-0.55	0.00	0.90	1.58	4.83	0.26	0.09
Standard error	1.17	0.64	0.40	0.43	0.17	0.44	0.37	0.20	1.27	0.37	0.00	0.37	0.33	0.33	0.02	0.00

 $\mathrm{PH}=$ Plant height, $\mathrm{PFW}=$ Plant fresh weight, PDW= Plant dry weight, LA= Leaf area, CC= Chlorophyll content, LT= Leaf temperature, NP/P= Number of pods/plant, NS/P= Number of seeds/pod, OC= Oil content, PC= Protein content, PI.C= Proline content, EML= Electrolyte membrane leakage, DOM= Days to 50% maturity, DOF=Days to 50\% flowering, NN/P= Number of nodes/plant, 100SW=100 seed weight

Table 6. Specific combining ability effects of crosses for maturity traits in soybean under treatment level T_{0}

Crosses	PH	PFW	PDW	LA	CC	LT	NP/P	NS/P	OC	PC	Pl.C	EML	DOF	DOM	NN/P	100SW
17418×24576	5.78	3.44	2.27	1.52	-0.05	-1.03	0.15	0.07	0.44	-0.09	-0.04	-4.30	-0.37	-6.30	-0.15	-0.25
17434×24576	-5.78	-0.44	-0.32	3.59	1.82	-0.37	-1.88	0.27	-2.37	-1.27	0.10	0.65	-1.42	-0.68	0.36	0.27
17444×24576	-1.44	4.89	-2.62	-3.76	-2.15	-1.42	1.77	0.36	0.47	-0.48	-0.09	0.58	-0.48	4.54	-0.50	-0.07
24566×24576	-0.56	-5.11	-1.47	0.26	-0.15	-0.48	-1.04	-1.17	2.12	0.82	-0.02	0.99	3.30	1.12	-0.28	0.23
24567×24576	2.00	-2.79	2.14	-1.61	0.53	3.30	1.01	0.47	-0.66	1.02	0.06	2.08	1.50	1.32	0.57	-0.18
17418×24581	-4.69	-5.51	-0.33	0.19	0.37	1.50	-0.18	0.60	-1.36	-2.09	0.05	1.00	-4.83	4.19	0.01	0.35
17434×24581	5.42	-9.79	-0.16	-2.23	-2.27	-4.83	1.03	-0.34	3.14	0.85	0.01	-0.58	2.78	1.46	0.12	-0.12
17444×24581	2.76	4.35	2.93	2.91	1.66	2.78	-0.31	-1.01	-1.12	1.45	0.05	-0.98	3.56	-8.16	-0.16	0.03
24566×24581	1.98	9.18	-1.39	0.39	0.96	3.56	0.12	0.39	-1.94	1.85	-0.02	1.05	-3.00	1.22	0.19	-0.15
24567×24581	-5.47	1.77	-1.05	-1.27	-0.72	-3.00	-0.66	0.36	1.28	-2.06	-0.10	-0.49	-0.47	1.29	-0.16	-0.10
17418×24582	-1.09	2.07	-1.94	-1.71	-0.32	-0.47	0.03	-0.67	0.92	2.19	-0.01	3.30	5.20	2.11	0.14	-0.09
17434×24582	0.36	10.23	0.49	-1.36	0.45	5.20	0.85	0.06	-0.77	0.42	-0.11	-0.06	-1.36	-0.78	-0.48	-0.15
17444×24582	-1.31	-9.24	-0.31	0.85	0.49	-1.36	-1.46	0.65	0.65	-0.97	0.03	0.40	-3.08	3.61	0.66	0.04
24566×24582	-1.42	-4.07	2.86	-0.66	-0.81	-3.08	0.92	0.79	-0.18	-2.67	0.05	-2.05	-0.30	-2.34	0.08	-0.08
24567×24582	3.47	1.02	-1.10	2.88	0.19	-0.30	-0.34	-0.84	-0.62	1.04	0.04	-1.59	-1.03	-2.61	-0.40	0.28
Standard Error	2.61	1.44	0.91	0.97	0.39	1.00	0.84	0.45	2.84	0.83	0.00	0.84	0.75	0.75	0.05	-0.25

Number of nodes/plant, $100 \mathrm{SW}=\mathbf{1 0 0}$ seed weight

Crosses	PH	PFW	PDW	LA	CC	LT	NP／P	NS／P	OC	PC	Pl．C	EML	DOF	DOM	NN／P	100SW
17418×24576	5.78	3.44	2.27	1.52	0.03	－1．04	－0．25	－0．04	－0．48	1.21	－0．04	－2．26	－2．25	－6．32	0.26	0.09
17434×24576	－5．78	－0．44	－0．32	3.59	1.58	－0．36	－1．31	0.49	－3．28	0.21	－0．04	－3．59	－1．38	0.09	－0．11	－0．03
17444×24576	－1．44	4.89	－2．62	－3．76	－2．09	－0．90	2.75	0.54	0.36	0.57	－0．04	5.45	－3．17	4.73	－0．19	－0．05
24566×24576	－0．56	－5．11	－1．47	0.26	－0．07	1.30	－2．14	－1．12	3.31	－0．91	0.08	－1．52	1.94	1.04	－0．11	－0．07
24567×24576	2.00	－2．79	2.14	－1．61	0.55	0.99	0.95	0.13	0.08	－1．09	0.04	1.91	4.86	0.46	0.15	0.06
17418×24581	－4．69	－5．51	－0．33	0.19	0.26	0.19	－0．58	0.89	－0．51	－1．23	－0．01	－1．71	4.94	5.22	－0．17	－0．04
17434×24581	5.42	－9．79	－0．16	－2．23	－1．84	0.28	0.35	－0．79	3.30	－0．10	0.05	3.40	－2．66	1.12	－0．04	0.03
17444×24581	2.76	4.35	2.93	2.91	1.38	－0．16	－0．99	－0．73	－1．85	1.20	0.03	－1．15	0.96	－8．25	0.25	－0．01
24566×24581	1.98	9.18	－1．39	0.39	0.94	1.41	1.42	0.60	－1．92	1.85	－0．05	1.32	－0．47	0.86	0.03	－0．04
24567×24581	－5．47	1.77	－1．05	－1．27	－0．74	－1．71	－0．20	0.02	0.98	－1．72	－0．01	－1．87	－2．78	1.05	－0．08	0.06
17418×24582	－1．09	2.07	－1．94	－1．71	－0．29	0.85	0.84	－0．86	0.99	0.02	0.05	3.96	－2．70	1.11	－0．09	－0．05
17434×24582	0.36	10.23	0.49	－1．36	0.26	0.08	0.96	0.30	－0．02	－0．12	－0．01	0.19	4.04	－1．21	0.14	0.00
17444×24582	－1．31	－9．24	－0．31	0.85	0.71	1.06	－1．76	0.19	1.49	－1．77	0.01	－4．30	2.22	3.52	－0．07	0.07
24566×24582	－1．42	－4．07	2.86	－0．66	－0．87	－2．71	0.72	0.52	－1．39	－0．94	－0．02	0.19	－1．47	－1．90	0.08	0.11
24567×24582	3.47	1.02	－1．10	2.88	0.19	0.72	－0．75	－0．16	－1．07	2.81	－0．03	－0．05	－2．09	－1．51	－0．07	－0．13
Standard Error	1.97	1.49	0.50	0.61	0.30	1.55	0.61	0.34	1.68	0.55	0.00	1.00	0.43	0.65	0.08	0.00

 Number of nodes／plant，100SW＝ 100 seed weight

00%	80%	060	68\％0	$\pm \varepsilon^{*}{ }^{\text {I }}$	$00^{\circ} 0$	Lナ＊	ZİI	$97^{\circ} 0$	LS＇0	S8．0	$L 7^{*} 0$	t8＊0	$\underline{E} \boldsymbol{*}^{0}$	60．I	$87^{\circ} \mathrm{Z}$	． 10.1 g prepuefs
00%	80.0	10°	S8．0－	IE＇I	E0\％ 0^{-}	$91^{\circ} \boldsymbol{Z}$	LE＊${ }^{-}$	I ＇0－$^{-}$	$\mathrm{I6}^{\circ} \mathrm{I}^{-}$	$60^{\circ} \mathrm{I}$	¢ $5^{\circ} 0^{-}$	$\tau \varepsilon^{*}$	\＆6．${ }^{-}$	60.0	カ1＊ \mathcal{E}	Z8Stて× $\times 9$ St $冖$
t0 0^{-}	I0\％0	L $L^{\circ} 0^{-}$	¢ $\varepsilon^{\circ} 0^{-}$	89 ${ }^{\circ}{ }^{-}$	2000－	18\％0－	＋6．${ }^{-}$	¢ع\％0	E80	$\pm 7^{*} 0$	$\mathrm{Sc}^{\mathbf{0}}{ }^{-}$	t90 \mathcal{L}	EI＇z	$6 \varepsilon^{\circ}{ }^{\text {b }}$	E8\％${ }^{-}$	Z8Stて×99Stて
E0：0${ }^{-}$	L0．0－	$68^{\circ} \mathrm{E}$	E6 ${ }^{\circ}$	99＊L	I0\％	てE＇${ }^{-}$	26＊	t $\boldsymbol{z}^{\prime} 0$	E0＇${ }^{-}$	$0 \boldsymbol{t}^{\text {－}}$	Es＇0	L0．0－	で＊${ }^{-}$	z \％＇9－$^{\text {－}}$	LS＊${ }^{-}$	z8stて×tttくI
S0＊0－	Z1．0－	6でて－	0s＇I－	tc＇8－	100^{-}	20.0	E¢＊0－	E\＆\％	LL＇0	てが「－	6200	İと＇	160	76.8	8ع＇${ }^{-}$	Z8Stて× + EtLI
II\％	II\％	\＆1＇I	$\varepsilon \chi^{\prime} \mathrm{I}^{-}$	$\pm \underbrace{*} \mathrm{I}$	S0\％	S0\％${ }^{-}$	ZL＇0	IL＊${ }^{-}$	SE＇I	0¢＇I－	19＊0－	LE＇I－	$69^{\circ} 0^{-}$	19＇I	8s＇I	て8Stて×8ItくI
S0\％	20.0	L9＇I	96\％${ }^{-}$	20＊＊	100^{-}	99＊＇${ }^{-}$	\＆1＇I	60.0	SE0	86\％	L9＊0－	6200－	$L 7^{*} 0^{-}$	$90{ }^{\circ} \mathrm{E}$	$97^{*} \mathbf{V}^{-}$	I8Stて× $595 \dagger$ ¢
S0\％	2I＇0	LE＊	98．${ }^{-}$	60%	S000－	$06^{\circ} \mathrm{I}$	$6 \varepsilon^{\prime} \chi^{-}$	9580	01＇I	L \％$^{-}{ }^{-}$	6100－	L800－	L600－	ZL＊	$8 \varepsilon^{\prime \prime}$ \％	18Stて×99Stて
20%	ti＊0	$96 L^{-}$	で00	¢c＇I－	E0\％	69.0	01\％${ }^{\text {－}}$	$88.0{ }^{-}$	690^{-}	E80	$8 \varepsilon^{\prime} \mathrm{I}$	S8 ${ }^{\circ} \mathrm{I}$	89°	¢0．1	$0 L^{\circ} \mathrm{E}$	18Stて×ttt -1
20%	$87^{\circ} 0^{-}$	690	$85^{\circ} 0^{-}$	01•8	S0\％	$97^{\circ} 0^{-}$	$9 \dagger^{\circ} \mathrm{E}$	$9 \mathrm{SO}^{-}$	$97^{\circ} 0^{-}$	IL＇I	$t \iota^{\circ} 0^{-}$	SI＇I	zع＊0－	tع 8 －	01＊ \mathcal{E}	I8Stて× \dagger Et $\angle 1$
ti＊${ }^{-}$	10\％${ }^{-}$	$\dagger \tau \cdot \mathrm{s}$	$68^{\circ} \mathrm{t}$	z9\％${ }^{\text {－}}$	100^{-}	L9\％${ }^{-}$	01＊0－	6L＊0	0s＊0－	0 $L^{\circ} 0$	Ez＇0	¢ع＇I－	てI＇I－	$85^{\circ} \mathrm{C}$	L6＊＊	I8Stて×8ItLI
S0\％${ }^{-}$	01．0－	¢ع＊0	18．ε	$0 L^{\circ} \boldsymbol{z}$	t000	0S＊0－	9 $\mathbf{L}^{\circ}{ }^{-}$	210	9S＊	68.1	280	zs＇0－	$0 z^{\prime}$	SI＇${ }^{-}$	てI＇I	9LStて× $295 \dagger$ ¢
$10.0{ }^{-}$	$\varepsilon 1^{\circ} 0^{-}$	¢ $\varepsilon^{*} 0$	IでZ	6S ${ }^{\text {I }}$	80%	$60{ }^{\circ}{ }^{-}$	E¢＇t	1600－	E6 ${ }^{\circ}{ }^{-}$	E0\％	t $\iota^{\circ} 0$	$\angle L^{\circ}$ Z－	LI＇I－	て¢｀－	9t＊ 0	9LStて×99Stて
10%	$80^{\circ}{ }^{-}$	$80^{\circ} \mathrm{t}$		20．9－	＋0．0－	E9\％	8100	t900	$\varepsilon L^{\circ} \mathrm{I}$	$\varepsilon て ゙ て ゙$	$06{ }^{\text { }}{ }^{-}$	8L＇I－	$97^{\circ}{ }^{-}$	81＇s	61＇${ }^{-}$	9LStて×tttLI
E0\％	$0 t^{\circ} 0$	09＊I	66．${ }^{\text {I }}$	tt＊ 0	t00 ${ }^{-}$	t $\boldsymbol{z} \cdot 0$	\＆1＇${ }^{-}$	$\mathfrak{E z} 0$	IS＊0－	62\％${ }^{-}$	S0＊${ }^{-}$	SİZ	$65^{\circ} 0^{-}$	85＊0－	ZL＇I－	9LStて× + Et LI
20.0	01．0－	LE＇9－	L9 ${ }^{\circ} \mathrm{E}^{-}$	82＇I	＋0．0－	ZL＊0	19＊0－	$80^{\circ}{ }^{-}$	S8．0－	09.0	6800	26\％	18． 1	$88^{\circ} \mathrm{E}$	$\varepsilon \varepsilon \cdot \varepsilon$	9LStて×8ItくI
MS00I	d／NN	WOC	HOC	TWA	D＇Id	Dd	DO	d／SN	d／dN	LT	D？	VT	MOd	MAd	Hd	sassod？

Specific combining ability effects of crosses for maturity traits under $\mathrm{T}_{2}=$ Water level: 2 irrigations + Average weekly temperature $=29^{\circ} \mathrm{C}$ are presented in (Table 8). Crosses 17444×24581 had positive and significant specific combining ability effects for most of the traits followed by $17418 \times 24576,24567 \times 24576$, $17434 \times 24581,17444 \times 24582$ and 24566×24581. Cross 17444×24581 had positive and significant SCA effects for 100SW, PH, PDW, LA, CC, Pl.C, PC, DOF and NN/P. Positive and significant SCA effects were observed in cross 24567×24576 for PDW, CC, LT, NP/P, Pl.C, EML and DOF. Cross 24566×24581 had significant and positive SCA effects for 100 SW , PH, PFW, NP/P, NS/P, PC and NN/P. Positive and significant SCA effects were observed in cross 17444×24582 for CC, LT, OC, Pl.C, EML, DOF and DOM. Cross 17434×24581 had positive and significant SCA effects for PH, LA, LT, 100SW, OC, Pl.C and EML. Cross 17418×24576 had positive and significant SCA effects for $100 \mathrm{SW}, \mathrm{PH}, \mathrm{PFW}$, PDW, CC, LA and PC.

Selection of best general and specific combiners: Hence, on the basis of general combining ability effects of parents under various treatments of water and temperature at maturity stage, 17444,24567 and 24581 were selected as best general combiners and crosses 17444×24581 and 24567×24576 were selected as best cross combiners.

Discussion

Analysis of variance of our study showed that all soybean entries had significant differences for most of studied traits under various combinations of water and temperature treatments. Rima et al., (2019) observed significant differences for plant height, total chlorophyll, proline content and total dry matter production of soybean under different temperature and water treatments respectively. Vegetative period of soybean from emergence to flowering including number of nodes, plant height, leaf area and juvenile period were significantly affected by temperature (Camara et al., 1997; Alsajri el al., 2019). Previous studies revealed significant effect of climate warming and water stress conditions on different maturity traits in soybean i.e. number of pods/plant, number of seeds/pod and 100 -seed weight (Shi et al., 2001; Sarkar et al., 2015; Zhang et al., 2016; Mimi et al., 2016). Present study showed that oil content had nonsignificant differences at treatment levels T_{0} and T_{1}. Literature indicated that seed oil and protein concentrations of soybean were affected by both temperature and water stress (Foroud et al., 1993; Gibson \& Mullen, 1996; Piper \& Boote, 1999). Contradiction in results may be due to different environmental conditions and soybean accessions. Many plant scientists found significant effect of water and temperature stress on flowering and maturity in soybean (Major et al., 1975; Hadley et al., 1984; Cober et al., 2001; Agele et al., 2004; Han, 2007, Fei et al., 2009; Li et al., 2020). Soybean temperatures above $40^{\circ} \mathrm{C}$ have an adverse effect on the rate of growth, the rate of formation of the nodes and internode growth and floral initiation (Mamnabi et al.,
2020). Szczerba et al., (2011) observed significant effect of temperature on electrolyte membrane leakage and plant weight in all studied soybean cultivars.

This revealed a high prevalence of genetic heterogeneity among soybean entries for most of the traits which could be useful in selection in subsequent generations of soybean breeding under different climatic conditions.

Estimates of specific and general combining ability (SCA and GCA) have been frequently used in crop improvement to select potential parents and crosses (Rukundo et al., 2017; Mwale et al., 2017). General combining ability effects in our study revealed that parents 17444,24567 and 24581 and crosses 17444×24581 and 24567×24576 were best general and specific combiners respectively. These crosses obtained by crossing high \times high and high \times low general combiners respectively. Selected parents had significant and positive GCA values for most of the traits i.e. 17444 (PH, PFW, PDW, CC, LT, LA, EML, DOF, PC and NS/P), 24567 (PH, NP/P, OC, DOF PFW, LA, LT, Pl.C, EML and DOM) and 24581 (PH, PDW, CC, LT, NP/P, PC, Pl.C, EML, NN/P and 100SW) under various combinations of water and temperature treatments. Selected Crosses had significant and positive SCA values for most of the traits i.e. 17444×24581 (PH, NN/P, DOF, 100SW, PC, LA PFW, PDW, LT, CC and Pl.C) and 24567×24576 (PH, NN/P, DOF NP/P, 100SW, PC, PDW, LT, CC, EML, Pl.C and NS/P). High positive combining ability values for soybean cultivars for plant height, number of nodes, days to maturity and flowering were also reported in literature (Gavioli et al., 2008; Rialch \& Sharma, 2019; Tesfaye et al., 2020). In literature, studied cultivars showed positive and significant GCA and SCA effects for number of pods/plant, number of seeds/pod and 100 seed weight (Rialch \& Sharma, 2019; Tesfaye et al., 2020). Rialch et al., (2017) reported predominance of specific SCA effects over GCA effects for protein content and oil content. Dhanda \& Munjal (2009) reported positive and significant GCA and SCA effects for electrolyte membrane leakage in eight wheat genotypes under different temperature treatments. Gopikannan \& Ganesh (2013) found significant combining ability values among soybean crosses and parents for proline and chlorophyll content. In literature, plant fresh and dry weight of soybean had significant GCA and SCA effects under water-limited stress conditions (Chiipanthenga et al., 2021).

In present study, positive and significant GCA effects of parents (17444, 24567 and 24581) indicated the existence of favorable genes that were additive in nature and can be transmitted from parents to offspring. Cross 17444×24581 showed high SCA effects because of cross between high \times high general combiners. In cross 24567×24576, male parent 24576 was a poor general combiner which indicated that significance of SCA effects is due to interaction of additive and non-additive genes (Cho \& Scott, 2000; Friedrichs et al., 2016). Hence, combining ability analysis is helpful to evaluate the relative importance of effects due to non-additive (associated with SCA) as well as additive gene effects (expressed by GCA effects). This information is useful in establishing the best breeding strategy.

Conclusion

General combining ability effects suggested that 17444,24567 and 24581 are best among parents and can be further used in selection for adaptation. Specific combining ability effects suggested that cross combinations 17444×24581 and 24567×24576 may be further evaluated under different climatic conditions to study their worth as potential crosses.

References

Acquaah, G. 2012. Principles of plant genetics and breeding ($2^{\text {nd }}$ ed.). Wiley-Blackwell, Oxford.
Adebambo, A.O. 2011. Combining abilities among four breeds of chicken for feed efficiency variation: a preliminary assessment for chicken improvement in Nigeria. Trop. Anim. Health Prod., 43: 1465-1466.
Agele, S.O., A.R. Adenawoola and M. Doherty. 2004. Growth response of soybean lines to contrasting photo-thermal and soil moisture regimes in a Nigerian tropical rainforest. Int. J. Biotron., 33: 49-64.

Ali, A., Z. Iqbal, M.E. Safdar, M. Ashraf, M. Aziz, M. Asif, M. Mubeen, I.R. Noorka and A. Rehman. 2013. Comparison of yield performance of soybean varieties under semi-arid condition. J. Anim. Plant Sci., 23: 828-832.
Alsajri. F.A., B. Singh, C. Wijewardana, J.T. Irby, W. Gao and K.R. Reddy. 2019. Evaluating soybean cultivars for low and high temperature tolerance during the seedling growth stage. Agron., 9: 13.
Amjad, M. 2014. Oilseed crops in Pakistan. Pakistan Agri. Res. Council (PARC), Islamabad, Pakistan. 1-59.
Bates, L.S., R.P. Waldern and I.D. Teare. 1973. Rapid determination of free proline for water stress studies. Plant Soil, 39: 205-207.
Berlato, M.A. 1981. Bioclimatologia da soja. In: (Eds.): Miyasaka, S. and J.C. Medina. A soja no Brasil. Campinas, SP, Brasil, Inst. Food Technol., (ITAL). 175-184.
Camara, G.M.S., D. Sediyama, D. Dourado-Neto and M.S. Bernardes. 1997. Influence of photoperiod and temperature on the growth flowering and maturation of soybean (Glycine max (L.) Merrill). Sci. Agri., 149-154.
Chiipanthenga, M.K., M.T. Labuschagne, I.R. Fandika and R. van der Merwe. 2021. Combining ability of soybean (Glycine max L.) yield performance and related traits under water-limited stress conditions. Euphytica.
Cho, Y. and R.A. Scott. 2000. Combining ability of seed vigor and seed yield in soybean. Euphytica, 112: 145-150.
Cober, E.R., D.W. Stewart and H.D. Voldeng. 2001. Photoperiod and temperature responses in early-maturing, near-isogenic soybean lines. Crop Sci., 41: 721-727.
Comstock, R.E. and H.F. Robinson. 1948. The components of genetic variance in population of biparental progenies and their use in estimating the average degree of dominance. Biometrics, 4: 254-266.
Cure, J.D., B. Acock, 1986. Crop responses to carbon dioxide doubling-a literature survey. Agri. Forest Meteorol., 38: 127-145.
Dhanda. S.S. and R. Munjal. 2009. Cell membrane stability: combining ability and gene effects under heat stress conditions. Cereal Res. Comm., 37: 409-417.
Fei, Z., C. Wu, H. Song, W. Hou, B. Zhang and T. Han. 2009. Identification of photo-thermal responses in soybean by integrating photoperiod treatments with planting-date experiments. Acta Agronomica Sinica., 35: 1525-1531.
Foroud, N., H.H. Mundel, G. Saindon and T. Entz. 1993. Effect of level and timing of moisture stress on soybean yield, protein, and oil responses. Field Crops Res., 31: 195-209.

Friedrichs, M.R., J.W. Burton and C. Brownie. 2016. Heterosis and genetic variance in soybean recombinant inbred line populations. Crop Sci., 56: 2072-2079.
Gavioli, E.A., D. Perecin and A.O.D. Mauro. 2008. Analysis of combining ability in soybean cultivars. Crop Breed. Appl. Biotechnol. 8.
Gibson, L.R. and R.E. Mullen. 1996. Soybean seed composition under high day and night growth temperatures. Ibid., 73: 733-737.
Gopikannan, M. and S.K. Ganesh. 2013. Investigation on combining ability and heterosis for sodicity tolerance in rice (Oryza sativa L.) Afr. J. Agri. Res., 8: 4326-4333.
Hadley, P., E.H. Roberts, R.J. Summerfield and F.R. Minchin. 1984. Effects of temperature and photoperiod on flowering in soybean [Glycine max (L.) Merrill]: A quantitative model. Ann. Bot., 53: 669-681.
Hallauer, A.R., M.J. Carena and J.B.M. Filho. 2010. Quantitative Genetics in Maize Breeding (Handbook of Plant Breeding) ($2^{\text {nd }}$ ed.). Springer, London.
Hamayun, M., S.A. Khan, Z.K. Shinwari, A.L. Khan, N. Ahmad and I.J. Lees. 2010. Effect of polyethylene glycol induced drought stress on physio-hormonal attributes of soybean. Pak. J. Bot., 42: 977-986.
Han, T. 2007. Photoperiodism in soybean. p. 211-220. In: Contemporary soybean research in China. (Eds.): Wang, J. and Q. Guo. Jindun Press, Beijing, China.
Havlík, P., H.J.P. Valin, M. Gusti, E. Schmid, N. Forsell, M. Herrero, N. Khabarov, A. Mosnier, M. Cantele and M. Obersteiner. 2015. Climate change impacts and mitigation in the developing world: an integrated assessment of the agriculture and forestry sectors. Policy Res. Working Paper. World Bank Group. Washington, DC, USA. 1: 316-21.
Khalil, S.K., J.G. Mexal, A. Rehman, A.Z. Khan, S. Wahab, M. Zubair, I.H. Khalil and F. Mohammad. 2010. Soybean mother plant exposure to temperature stress and its effect on germination under osmotic stress. Pak. J. Bot., 42: 213-225.
Li, S., Y. Xie, G. Liu, J. Wang, H. Lin, Y. Xin and J. Zhai. 2020. Water use effciency of soybean underwater stress in different eroded soils. Water, 12: 373.
Lutts, S., J.M. Kinet and J. Bouharmont. 1996. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann. Bot., 78: 389-398.
Major, D.J., D.R. Johnson, J.W. Tanner and I.C. Anderson. 1975. Effects of day length and temperature on soybean development. Crop Sci., 15: 174-179.
Mamnabi, S., S. Nasrollahzadeh, K. Ghassemi-Golezani and Yaghoub Raei. 2020. Improving yield related physiological characteristics of spring rapeseed by integrated fertilizer management under water deficit conditions. Saudi J. Biol. Sci., 27: 797-804.
Mimi, A., M.A. Mannan, Q.A. Khaliq and M.A. Baset-Mia. 2016. Yield response of soybean (Glycine max L.) genotypes to water deficit stress. Bangladesh Agron. J., 19: 51-60.
Mwale, S.E., M.O. Ssemakula, K. Sadik, B. Alladassi, P. Rubaihayo, P. Gibson, W. Singini and R. Edema. 2017. Estimates of combining ability and heritability in cowpea genotypes under drought stress and non-stress conditions in Uganda. J. Plant Breed. Crop Sci., 9: 10-18.
Piper, E.L. and K.J. Boote. 1999. Temperature and cultivar effects on soybean seed oil and protein concentrations. J. Amer. Oil Chem. Soc., 76: 1233-1241.
Rialch, I. and J.D. Sharma. 2019. Combining ability studies for yield and related traits in soybean (Glycine max). Ind. J. Agri. Sci., 89: 1334-9.
Rialch, I., J. Dev and B. Kumar. 2017. Heterosis and combining ability studies for quality traits in soybean [Glycine max (L.) Merrill] Int. J. Curr. Microbiol. App. Sci., 6: 3443-3451.

Rima, I.A., M.A. Mannan, M.A.A. Mamun and Z.U. Kamal. 2019. Morpho-physiological traits of soybean as affected by drought. Bangladesh Agron. J., 22: 41-54.
Rukundo, P., H. Shimelis, M. Laing and D. Gahakwa. 2017. Combining ability, maternal effects, and heritability of drought tolerance, yield and yield components in sweetpotato. Front. Plant Sci., 7: 1-14.
Salami, A.E. and G.O. Agbowuro. 2016. Gene action and heritability estimates of grain yield and disease incidence traits of low-n maize (Zea mays L.) inbred lines. Agri. Biol. J. North Amer., 7: 50-54.

Sarkar, K.K., M.A. Mannan, M.M. Haque and J.U. Ahmed. 2015. Physiological basis of water stress tolerance in soybean. Bangladesh Agron. J., 18: 71-78.
Shi, C. 2001. Gradual effects of climate change on food production and adaptation strategies in the middle and lower valley of Yangtze River Jiangsu. J. Agri. Sci., 17: 1-6.
Shikano, T., M. Nakadate and Y. Fujio. 2000. An experimental study on strain combinations in heterosis in salinity tolerance of the guppy Poecilia reticulate. Fisheries Sci., 66: 625-632.
Sionit, N. and J.P. Kramer. 1977. Effect of water stress during different stages of growth of soybeans. Agron. J., 69: 274-278.

Su, J., F. Zhang, X. Yang, Y. Feng, X. Yang, Y. Wu, Z. Guan and W. Fan. 2017. Combining ability, heterosis, genetic distance and their intercorrelations for waterlogging tolerance traits in chrysanthemum. Euphytica, 213: 1-15.
Szczerba, A., A. Plaz, J. Pastuszak, P. Kopec, M. Hornyak and F. Dubert. 2011. Effect of low temperature on germination, growth, and seed yield of four soybean (Glycine max L.) cultivars. Agron., 800.
Tayagi, S.K. and R.P. Tripathi. 1983. Effect of temperature on soybean germination. Plant Soil, 74: 273-280.
Tesfaye, A., M. Githiri, J. Derera and T. Debele. 2020. Combining ability of soybean (Glycine max) for low phosphorus tolerance on acidic soils of Western Ethiopia. Plant Breed., 139: 950-958.
Wang, B., W. Gu and H. Gao. 2014. Longitudinal genetic analysis for growth traits in the complete diallel cross of rainbow trout (Oncorhynchus mykiss). Aquaculturre, 430: 173-178.
Zeinab, E.G. and A.G. Helal. 2014. Diallel analysis and separation of genetic variance components in eight faba bean genotypes. Ann. Agri. Sci., 59: 147-154.
Zhang, L., L. Zhu, M. Yu and M.J.C.J. Zhong. 2016. Warming decreases photosynthates and yield of soybean [Glycine max (L.) Merrill] in the North China Plain. Crop J., 4: 139-146.

