Pak. J. Bot., 56(2): DOI: http://dx.doi.org/10.30848/PJB2024-2(34)

UNRAVELING THE POTENTIAL OF ACC DEAMINASE-PRODUCING MICROBES IN
VARIOUS AGRICULTURAL STRESSES: CURRENT STATUS,
LIMITATIONS, AND RECOMMENDATIONS

SITI HALIMAH LAREKENG", NGADIMAN?, YENI KHAIRINAS3,
RUMELLA SIMARMATA? AND MARGARETTA CHRISTITA3

!Faculty of forestry, Hasanuddin University, JI. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia
2Departement of Agricultural Microbiology, Universitas Gadjah Mada, JI. Flora, Bulaksumur, Yogyakarta, Indonesia
SResearch Center for Applied Microbiology, National Research and Innovation Agency, JI. Raya Jakarta-Bogor Km 46,

Cibinong 16911, Indonesia
*Corresponding author's email: sittihalimah@unhas.ac.id

Abstract

More than 50% of the main crops in the world are lost to agricultural stressors, either biotic or abiotic. It has been
demonstrated that using chemical approaches to boost plant yield causes other serious problems, including a decline in soil
fertility and significant health problems. While advanced plant biotechnology techniques, like genetic modification, still
faces ethical questions, unpredictable environmental risks, challenges in their usability and commercial viability, as well
as high labour and costs. Using plant-associated microbes with 1-aminocyclopropane-1-carboxylate deaminase (ACCD)
activity can be a solution to speed up plant production upon environmental stresses. They offer stress-protective responses
by reducing the production of the plant stress hormone ethylene to a level that is not detrimental to plants. Furthermore,
adopting ACCD-producing microbes with additional supporting traits or mixing them with other beneficial microbes in a
consortium can be a promising strategy to sustain their effectiveness in practical use. This paper reviews the current
research on the role of ACCD-producing microbes in increasing plant productivity under various stresses, along with their

limitations and recommendations for field application.
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Introduction

Due to their immobility, plants are vulnerable to
various biotic or abiotic stresses, including phytopathogen
or pest attack, heat, drought, waterlogging, salt, cold,
nutritional deficiencies, heavy metals, etc. (Maxton ef al.,
2018; Singh et al., 2022b). Over 50% of the main crops are
lost due to those accumulated stressors (Oshunsanya ef al.,
2019; Singh et al., 2022b). Along with that issue, it has also
become difficult to satisfy the food demand because of the
continuous growth in the global population (In Briefto The
State of Food Security and Nutrition in the World 2022,
2022). While the extension of agricultural land to boost
plant productivity is almost impossible because of the
growth of industrialization, urbanization, degraded lands,
and limited water sources (Wang et al., 2022). Soil salinity,
drought, and waterlogging are the most problematic abiotic
stresses for food and agricultural production; in response to
those stresses, ethylene production in the plant increases
(Shabbir et al., 2022). The excessive production of
ethylene leads to the change in plant physiology and
molecular biology, including disturbance in enzyme
activity, stomatal closure, and low photosynthetic rate,
which slow down the plant's growth and development
(Dubois et al., 2018; Kumar ef al., 2018). Similar to abiotic
stresses, the growth of plants is directly hampered when
exposed to biotic stressors. Pathogen and pest attacks could
reduce crop yields by 10% to 40%. They are commonly
eliminated using agrochemicals resulting in a decline in
soil quality and nutrient content, polluting nearby water
bodies, and negatively impacting the growth of various
beneficial organisms in the soil (Ali & Kim, 2018;
Chaudhary et al., 2023).

Nowadays, biotechnological approaches are receiving
much attention in response to reducing the use of synthetic
fertilizers or pesticides. Those approaches include simple
classical breeding of superior plant varieties, genetic
engineering, protoplast fusion, In vitro selection techniques,
etc., (Kumar et al., 2018; Munaweera et al., 2022). Classical
breeding offers a cheap and simple method. However, it
takes more time to produce hybrids with desirable features.
In contrast, other strategies may provide a more effective
and rapid result, but the work requires high labour and cost
(Table S1). Genetic modification is one common strategy
used in plant engineering to make the plant more resistant
to environmental stresses. Even though creating transgenic
plants is a potential solution, several ethical concerns,
environmental  risks, field usability, commercial
acceptability, and production time constraints limit their use
(Rodriguez et al., 2022). Countries cultivating transgenic
plants have also been heavily criticized for using large
amounts of pesticides and destroying the rainforest to grow
even more crops. In addition, there are indications that
transgenic plants can cause the extensive spread of pest
insects (Bello et al., 2021). Proper integration, reproducible
expression, and predictable transmission of the introduced
transgene over successive generations are also crucial for
harnessing the benefits of this technology in agriculture.
Improper management of transgenic plants could result in
inactivation, undesired expression, or failure transmission
to the successive generation. Plant-associated microbes,
such as endophytic and phyllosphere microbes, or
rhizobacteria equipped with 1-aminocyclopropane-1-
carboxylate deaminase (ACCD) activity, can be a solution
to speed up plant production in agricultural stressors under
the limitation of the plant genetic manipulation approach.
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ACCD-producing microbes offer stress-protective
responses to reduce agricultural stressors that hamper the
productivity of plants (Kumar ef al., 2020). Some may also
be coupled with additional plant-growth properties, such as
the ability to produce phytohormones, siderophores, and
exopolysaccharides, fix nitrogen, or solubilize phosphate
and therefore boost plant growth even more (Ferreira et al.,
2019; Li et al., 2022). Furthermore, by metabolizing ACC
as the ethylene precursor, ACCD-producing microbes
reduce the elevated ethylene to its ideal level under biotic
and abiotic stress circumstances (Singh ef al., 2022). As a
result, microbial strains that have ACCD activity are
crucial for minimizing the negative impacts of agricultural
stresses. This review presents current studies on the activity
of ACCD-producing microbes to promote plant
productivity under various agricultural challenges. Besides,
the limitation and recommendations regarding ACCD-
producing microbes' application are also addressed.

An overview of ACCD-producing microbes: Applying
plant growth-promoting microbes (PGPM) that enhance
plant yield can be one alternative to advance sustainable
agriculture. The term "PGPM" refers to a class of helpful
microbes, including endophytes, free-living microbes, and
those with a symbiotic relationship with plants. They have
been proven in several studies to be the most superior and
environment-friendly alternative to agrochemicals and
other conventional agricultural practices for enhancing
plant growth and stress resistance (Gupta & Pandey, 2019;
Singh et al., 2022a). PGPM mainly support plant growth
directly by forming biofilms, producing extracellular
polymeric substances (EPS), fixing nitrogen, producing
phytohormones and siderophores, and performing ACCD
activity, or indirectly through the reduction of a plant
pathogen. Thus, the enzyme 1-aminocyclopropane-1-
carboxylate deaminase (ACCD) activity is one of the
strategies used by PGPM to alleviate agricultural stress.

It has been reported that ACCD-producing microbes
could lower down ethylene levels due to biotic or abiotic
stress. All higher plants generate ethylene, which is
referred to as a gaseous plant hormone (Tadiello et al.,
2018). Less than 1 mg-L"! of ethylene triggers a variety of
reactions in plants, such as the promotion of seed
germination, generation of leaf and root primordia, the
development of adventitious roots and root hairs, and other
impacts on plant growth and development (Singh et al.,
2015). However, in highly stressful situations, the ethylene
level might increase to a harmful level of 25 g-L"!, which
has adverse effects such as promotion of leaf senescence
and epinasty, thereby causing leaves to abscise and lose
their chlorophyll pigments (Singh ef al., 2015). In plants,
forming S-adenosyl-methionine (SAM) from the substrate
methionine and ATP is the first step in ethylene synthesis.
Then the enzyme ACC-synthase transforms SAM into
ACC. Finally, the generated ACC is oxidized by ACC
oxidase to ethylene and other volatile substances, including
carbon dioxide and hydrogen cyanide. ACCD-producing
microbes reduce ACC levels by using ACC deaminase to
cleave ACC into ammonia and o-ketobutyrate. The
decrease of ACC in the plant will improve plant growth and

decrease stress levels induced by ethylene (Yim ez al.,2010)
Furthermore, o-ketobutyrate and ammonia, due to ACC

breakdown, can provide additional sources of carbon and

nitrogen for plants and other microbes.

Some studies have reported that acdS gene is an
important for ACCD expression in several microbes (Gao
et al., 2020; Glick & Nascimento, 2021). ACCD structural
gene (AcdS) is present in the genomes of rhizosphere
bacteria, symbiotic rhizobia, and bacterial endophytes.
Depending on the quantity of substrate, oxygen existence,
and product accumulation, acdS can be regulated and
expressed differently. In Pseudomonas putida UW4, for
example, the regulation for acdS gene expression is made
through LRP coupled with CRP and FNR (Fig. 1a) (Shahid
et al., 2023). There are numerous regulatory elements
upstream of acdS in that mechanism, such as acdR gene,
which encodes LRP (leucine-responsive regulatory
protein), acdB box, which encodes FNR box (fumarate-
nitrate regulatory protein), and CRP box, which binds
cAMP receptor protein (Ali & Glick, 2021; Bomle ef al.,
2021). When ACC is present, the acdR gene expression is
promoted to activate the regulatory protein LRP to form
LRP-octamer. LRP-octamer will then activate acdB for the
formation of glycerophosphoryl diester phosphodiesterase.
A tripartite regulatory complex is created when LRP binds
to glycerophosphoryl diester phosphodiesterase and ACC.
AcdS promoter region is then activated when the LRP-
ACC-GDP complex binds to FNR box (in a low O,
environment) or CRP box (in a high O, environment) (P2
or P3). Complex LRP-ACC-GDP then activates the acdS
gene, causing the ACC molecule to break down into o-
ketobutyrate and ammonia. Leucine, a branched-chain
amino acid produced by the metabolism of a-ketobutyrate,
binds to LRP octamer and breaks it apart into inactive
dimers, inhibiting the acdS gene from being expressed
(Bomle et al., 2021).

In nitrogen-fixing bacteria like Rhizobia and
Mesorhizobium, the regulation mechanism of acdS is
different. Nif42 gene and the 654 sigma factor control the
expression of acdS gene in N-fixing bacteria (Moeller ez al.,
2021; Bomle et al., 2021). NifA2, a protein encoded by
nifA42, interacts with RNA polymerase 654 to promote acdS
transcription (Fig. 1(b)). In other studies, the expression of
acdS may be influenced by RNA Polymerase Sigma gene
(RpoS) (Fig. 1(c)). In proteobacteria, the sigma factor rpoS
is a crucial stress regulator in response to particular stress
stimuli or the stationary phase of their growth. In a
genetically altered strain of Enterobacter cloacae CAL2,
rpoS gene over-expression led to a rise in ACC deaminase
levels by 30% (Duca & Glick, 2020; Bomle et al., 2021).
However, in Pseudomonas sp. UW4 was transformed with
rpoS; the resultsshowed the opposite effect, where ACCD
levels were 20% lower than those by the wild type
(Zboralski & Filion, 2020; Bomle et al., 2021). Overall,
further genetic and biochemical research is still required to
fully comprehend the mechanisms governing ACCD
regulation and activity in various bacterial species.
Understanding the regulation mechanism of the ACCD
genes would help maximize the utilization of ACCD
bacteria to improve plant growth and development.
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Fig. 1. Mechanism of acdS activation through 1(a) LRP coupled with CRP and FNR; 1(b) Nitrogen fixation (Nif4) gene; 1(c) RNA
polymerase sigma S (RpoS) gene. LRP = Leucine Responsive regulatory Protein; FNR = Fumarate nitrate reduction regulatory protein;
CRP = Cyclic AMP receptor protein; GPDP = Glycerophosphoryl diester phosphodiesterase.

The role of ACCD-producing microbes in salinity
stress: Salinity is a significant abiotic stress and a severe
issue for agriculture, because it makes valuable lands less
productive. High salinity has harmed plant health by
increasing ethylene synthesis in the roots and cells,
decreasing nutrients in the soil, increasing negative
osmotic water pressure on plants, and disturbing nutrient
absorption (Etesami & Noori, 2019). Saline conditions
also harm the plant-associated microbiome (Abdul
Rahman et al., 2021)). Reactive oxygen species (ROS)
are produced in salinity stress, limiting the absorption of
several micro- and macro-nutrients and resulting in an
osmotic and ionic imbalance. Poor farming practices,

pesticides, and irrigation with salt water have contributed
to the expansion of all damaged areas (Dagar et al., 2019).
In addition, salinity impacts physiological activities,
including respiration, photosynthesis, nitrogen fixation,
etc., which lower agricultural yield and plant productivity
(Kirova & Kocheva, 2021; Jaiswal et al., 2021; Igbal et
al., 2020) In dry and semiarid locations, the issue of
salinity in the soil is common. It worsens due to
inefficient irrigation water use and the excessive use of
chemical fertilizers (Pahalvi et al., 2021).

Many studies report that plants with ACCD-
producing microbes have improved stress tolerance and
growth promotion (Gamalero & Glick, 2022). Microbes
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that produce ACCD have recently emerged as a possible
alternative to reduce salinity-induced plant stress
(Venugopalan et al., 2023; Gupta et al., 2022). For
instance, it has been discovered that inoculating canola
and cucumber with Pseudomonas putida UW4 improves
plant development in saline soil (Gamalero & Glick,
2022). Several studies have isolated and identified the
ACCD-producing endophytic bacteria from the roots of
Theobroma cacao L., Solanum tubesorum L., and Oryza
sativa. It showed that those bacteria have the potential to
promote the growth of soybean (Glycine max L.) under
saline conditions. Therefore, they can potentially
ameliorate the development of salt-stressed soybean
(Glycine max. L.). Gupta & Pandey (2019) isolated
ACCD-producing bacteria such as Paenibacillus sp.
ACCO06 and Aneurinibacillus aneurinilyticus ACC02; all
enhanced In vitro stress resistance in response to NaCl
(6%) and drought (-0.73 MPa). Some ACCD-producing
microbes that have been isolated and tested on various
plants during stress conditions are described in (Table S2).

Some microbes produce osmoprotective substances
such as proline and trehalose, quaternary ammonium
compounds in the cytoplasm, volatile organic molecules,
exopolysaccharides, and ACC deaminase to reduce plant
stress in a saline environment (Gowtham et al., 2022).
Proline is an osmolyte; a bacterium may protect a plant
from salinity or oxidative stress by increasing intrinsic
proline levels. TSS (total soluble sugars) also functions
as an osmoprotectant similar to proline. But, salinity
stress can decrease TSS levels in plants. ACCD-
producing microbes that can also increase TSS levels
will be beneficial in reducing salinity stress in plants
(Patel et al., 2023). ACC deaminase production by
microbes is most likely an essential and efficient
mechanism for manipulating the host cells. Therefore, a
microbe's action for reducing salinity stress may involve
several processes that work together to produce the
desired outcome (Fig. 2).
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QO Affecting plant

growth and
development
Q Affecting
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factors | | Acco &

\ Mgni”
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*less oxygen

Application of ACCD-
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The role of ACCD-producing microbes in drought
stress: Water stress is one of the significant abiotic
problems, and it is becoming a severe threat food security
worldwide. Drought limits crop productivity and affects
1-3% of all lands (Camaille et al., 2021). Drought stress
reduces photosynthesis, causes hormonal imbalances, and
impairs mineral absorption, all of which contribute to
lower plant yield (Rivas et al., 2016; Sharma, 2017;
Batool et al., 2022). Plants must use sophisticated and
complex mechanisms to survive in unfavorable water-
deficit conditions to perceive the stress signal and
maximize crop production (Camaille et al., 2021). Plant
hormones are necessary for controlling responses to many
environmental stimuli, including indirect and direct
mechanisms. However, according to a recent study, plant
hormone activation would be better if the presence of
plant associated microbe induces it. Plant growth-
promoting bacteria, including soil microbes, is an
example of studying the mechanism of plant hormone
activation against a stress. Soil microbes can reduce
abiotic stress and stimulate plant growth, leading to
sustainable agriculture (Vejan et al., 2016). Plant growth-
promoting microbes use indoleacetic acid, abscisic acid,
cytokinins, volatile organic compounds, ACC deaminase,
and exopolysaccharides to mitigate the adverse effects of
these stresses (Forni et al., 2017).

Water stress increases ethylene metabolic pathways,
limiting root elongation and development (Fig. 2). The
ability of many PGPR to control ethylene formation via the
ACC deaminase enzyme is a crucial feature; thus, PGPR
acts as an ACC sink (Saleem et al., 2018). Reducing ACC
concentration in root tissues promotes plant growth by
reducing endogenous ethylene formation. Several studies
have reported that plant drought tolerance could be
improved by lowering the inhibitory effect of ethylene on
plant (Glick, 2014; Fadiji et al., 2022; Ma et al., 2023;
Khan et al., 2023).

Drought and salinity
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Fig. 2. Plant response in abiotic stresses and application of ACCD-producing microbes with additional potential traits.
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Several investigations have been conducted, mainly
related to the role of ACCD-producing microbes in food
crops (Patil ez al., 2022; Shahid et al., 2023; Pandey et al.,
2023; Choudhury et al, 2023). The addition of
rhizobacteria Pseudomonas spp. containing ACCD to pea
(Pisum sativum L.) plants have been shown to promote
growth during pea disposal, yield production, and
maturation in water shortage (Arshad et al., 2008). ACCD-
producing and salt-tolerant Streptomyces can potentially
prevent crop loss in tomato plants under drought conditions
(Abbasi et al., 2020). Bacillus thuringiensis demonstrated
significant improvements in root hair elongation of wheat
plants through auxin and ACCD production, assisting in
improved water and nutrient absorption (Sati et al., 2022).
The activity of ACCD produced by the endophytic
bacterial strain Streptomyces sp. induces tolerance in rice
trough converting an ethylene precursor into ammonia and
a-ketobutyrate, thereby lowering ethylene levels in plants.
In addition to rhizobacteria, fungi are also microbes that
produce ACCD and can positively influence plant growth
(Tyskiewicz et al., 2022). ACCD induced by Trichoderma
harzianum positively affected maize seedling germination
and growth (Zhang et al., 2020). Silencing the 7as-AcdS
gene from 7. Asperellum reduced the ability of canola
plants to stimulate root elongation (Viterbo et al., 2010).

The role of ACCD-producing microbes in waterlogging
stress: Waterlogging, which typically happens several times
during the growing season, is one of the biggest obstacles in
agriculture, leading to yield lost. The effects of global
warmings, such as heavy rainfall and insufficient drainage and
irrigation system, are some factors causing waterlogging. The
oxygen diffusion into plant cells will be significantly lowered
when plants are submerged in water because oxygen diffusion
in water is 10,000 times slower than in air (Brazel etal., 2023).
The roots of the plants immediately get hypoxic due to the
soil's excess water and low oxygen level. In these situations,
enzyme ACC synthase is generated, substantially increasing
the amount of ACC in the roots. Since enzyme ACC oxidase
cannot function in the anaerobic conditions of flooded roots,
ACC builds up within the roots before being transferred to the
shoots, where it is converted to ethylene (Ali & Kim, 2018).
The ethylene buildup in plant tissues speeds up ROS
production, inhibiting photochemical function. It also
degrades macromolecules, ultimately resulting in cell death in
the host plant (Fig. 2). Some of ACCD-producing microbes
are facultative anaerobes, which may easily survive in
environments with low oxygen levels, including in
waterlogging (Simarmata et al., 2019; Saikia et al., 2023). The
significant levels of ACC produced by the host plant in
waterlogging stress can be utilized by ACC-producing
microbes, which results in minimal ethylene synthesis inside
plant tissues. According to some studies, ACC-producing
microbes application promoted plant productivity in
waterlogged conditions while reducing the levels of ethylene
by 60-90% (Grichko & Glick, 2001; Ali & Kim, 2018).

The transcriptional control model of acdS gene
regulates the activation of ACCD structural gene at lower
oxygen levels (Glick et al., 2007). It has been shown that
different bacterial strains with ACCD activity can
effectively protect plants against waterlogging. The
damaging effects of waterlogging on Brassica napus were
mitigated by applying the bacterium Pseudomonas putida
UW4 (Farwell et al.,, 2007), while the bacteria

Ochrobactrum rhizosphaerae, Serratia ureilytica, and
Achromobacter xylosoxidans elevated the impact of
waterlogging on Ocimum sanctum plant (Barnawal et al.,
2014). The use of endophytic bacteria Streptomyces sp.
GMKU has also been reported to improve plant biomass,
chlorophyll content, and adventitious roots and reduce the
ethylene levels of mung bean under flooding conditions
(Jaemsaeng et al., 2018). Even though it was initially
isolated from the rice plant, it can also colonize mung beans.
Endophytic bacteria may survive harsh environmental
conditions inside the plant tissue while positively
improving the plant host's growth. ACCD-producing
microbes capable of synthesizing exopolysaccharides (EPS)
could also be potential inoculants. EPS can help the
microbes to withstand environmental stress and aggregate
the microbes while maintaining stable attachment of
microbes on plant surfaces (Naseem et al., 2018); Thus, the
plant-microbe interaction could be enhanced.

The role of ACCD-producing microbe in biotic stress:
Plant growth and development are frequently hampered by
bacteria and fungi-causing diseases, which also cause the
plant to produce stress ethylene (Fig. 3). The sustained
damage of plant infections results from the plant's response
to excess levels of ethylene. It was reported that the
exogenous ethylene raised the prevalence of fungal
infections, whereas the application of ethylene inhibitors
lowered the occurrence of fungal infections (Marcos et al.,
2005; Ha et al., 2021; Prusky & Romanazzi, 2023). The
application of pesticides, fungicides, and agrochemicals is
a common practice to prevent plant diseases caused by
phytopathogen, resulting in the degradation of soil quality
and decreased available nutrients. ACCD-producing
microbes act as biocontrol agents to thwart pathogen
attacks. They have proven to defend plants from various
diseases, including Fusarium wilt, bacterial leaf blight,
root rot, and leaf infection.

ACCD-producing microbes have been reported to
suppress pathogens by either direct or indirect mechanisms,
such as by the production of antimicrobial compounds, lytic
enzymes, bacteriocins, and disruption of the pathogen
quorum sensing, or by inducing the plant defence system and
its signalling pathways, respectively (Saraf et al., 2010). The
cucumber disease caused by Pythium ultimum was lessened
by a P. fluorescens strain that had been genetically altered
with acdS gene of Pseudomonas putida UW4 (Wang et al.,
2000). The growth of mycelium of Fusarium sp. was highly
inhibited by P. fluorescens possessing ACCD activity
((Donate-Correa et al., 2014). Another study demonstrated
that plant disease caused by Ralstonia solani and Ralstonia
solanacearum could be prevented by ACCD-producing
bacteria (Rasche et al., 2006). In another experiment, ACCD
gene was introduced into a biocontrol bacterial strain,
Pseudomonas putida UW4, to compare the effects of
transformed and untransformed bacteria on Pythium
ultimum that cause disease in cucumbers (Wang et al., 2000).
The results showed that biocontrol bacteria with transformed
ACCD genes were more effective in combatting plant
disease and stimulating plant growth. The root and fresh
shoot weights were higher in the ACCD-transformed strain.
Additionally, the soft rot disease of potato slices caused by
the bacterial pathogen Erwinia carotovora subsp.
carotovora was also dramatically reduced by ACCD-
transformed strains. In that experiment, the production of
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ACCD coupled with biocontrol traits prevents the
production of stress ethylene and inhibits phytopathogens
from the affected plants. These findings suggest that ACCD-
producing microbes are essential in increasing disease
resistance. Future study is still needed to fully comprehend
the disease resistance capacity.

Challenges in the application of ACCD-producing
microbes and recommendations: When growing in the
natural environment, plants possess a specific system to
adapt to agricultural stressors. However, excessive
ethylene synthesis caused by continuing stress
environments still decreases plant productivity. Global
warming and climate change harm agricultural productivity,
facing a continuing risk to food resilience worldwide.
ACCD-producing microbes are important for improved
stress resistance. Pesticides and synthetic fertilizers, which
cause several side effects, are supposed to be substituted in
the future by a more environment-friendly approach, such
as the utilization of ACCD-producing microbes.

Despite successful experiments in laboratory and
greenhouse settings on the application of ACCD-producing
microbes, there has been a reluctance to use these microbes
on a large field scale. One of the critical problems of
applying ACCD-producing microbes as bioinoculants is
their lower environmental viability and unstable ACCD
activity. Only a few studies have used ACCD-producing
microbes for stress reduction in certain crops in field
settings (Nadeem et al., 2009; Kiani ef al., 2016). Under
laboratory conditions, ACCD-producing microbes can
encounter similar environmental stress. However, the
laboratory-to-field transfer of bacterial strains results in
decreased efficacy and survivability. Thus, it is crucial to
isolate  ACCD-producing strains that can survive in
particular environmental conditions.

SITI HALIMAH LAREKENG ET AL.,

Some factors must be considered to apply ACCD-
producing microbes in field settings. The first important step
is to select appropriate microbial strains with the traits
necessary to endure a target environmental stress. The
simplest method is to isolate a native strain from the field
since they could be adaptable when returned to their natural
habitat. Fungi can also potentially be applied because they
usually have higher survival rates since they can go through
to dormant phase. Fungi may recover from the dormant
phase and interact with the host plant when the environment
has returned to its ideal state or after receiving a growth
stimulus. It is also possible to select prospective ACCD-
producing microbes based on additional beneficial features.
In high salt and drought environments, microbes with the
capacity to produce osmoprotectants, improve water intake,
and resist high salinity, could be employed. While in
waterlogging stress, ACCD-producing endophytes or
facultative anaerobic microbes may assure their
effectiveness in low O, conditions. EPS production is also
one of the important features for ACCD-producing microbes
to protect them from various environmental stresses and
stabilize their attachment to plants for effective mutual
interaction between plants and microbes. For biotic stress,
the microbes that have dual functions as biocontrol and
stress reliever may be more effective in improving plant
fitness. Applying microbial consortia can also be another
option since it has been reported that microbial consortia
could have more potent activity than single bacteria (Zhang
& Zhang, 2022). Single bacteria with excellent performance
over a wide range of attributes are pretty uncommon. The
combination of mycorrhiza and ACCD-producing bacteria
may increase plant stress during drought conditions while
simultaneously reviving the soil's water content.

Biotic Stresses

Application of ACCD-
producing microbes with
special attributes

Biocontrol
Agent

Causing various
plant diseases

Direct effect

7 Pathogen
attack to plant

O Affectingplant

growth and
development
O Affecting
photosynthesis
Ethylene
production

I ACC oxidase

1-aminocyclopropane-
1-carboxylic acid (ACC)

I ACC -synthetase

S-adenosyl-
methionine (SAM)

I SAM-synthetase

Methionine

Indirect effect

Fig. 3. Plant response in biotic stresses and application of ACCD-producing microbes with additional potential traits.
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The next stage considers which microbial
production media and carriers will work best for ACCD-
producing microbes and the target field. In developed
countries, agricultural chemicals are inexpensive,
effective, and simple, while microbial inoculants require
more labour and are considered unproven technology.
Different from less-developed countries, microbial
inoculants are considered more appropriate when
agricultural chemicals are expensive. Producing
microbial biomass with low-cost compounds can be an
option to suppress the production cost of bacterial
biomass. Crude glycerol, corn flour, soybean meal, dairy
sludge, and maize bran residue are industrial wastes or
byproducts that can be utilized as inexpensive carbon or
nitrogen sources for microbial growth (Lobo et al.,
2019). In the case of microbial formulation, it may be
common to use liquid carriers, especially for bacteria,
because they are easy to multiply in a liquid medium.
However, there is a great possibility that other microbes
may easily grow and contaminate the liquid carriers and
compete with the beneficial bacteria for nutrients.
Utilizing pasta or granulated carriers may prevent other
microbes from contaminating the carrier rapidly.

Finally, manipulating the soil's properties can
potentially promote ACCD activity. It was reported that
ACCD activity was more stable in the alkali pH compared
to that in the neutral one. ACCD extracted from Penicillium
citrinum has an optimum degradation of ACC at pH 8.5.
These findings are identical to those of Honma et al., (1979)
that the activity of ACCD from Pseudomonas sp. strain
ACP was increased in the alkali pH. However, it is worth
noting that manipulating soil conditions should also
consider their effect on the soil microbiome.

After passing a series of laboratory-scale assays, the
use of ACCD-producing microbes can also be considered
on an industrial scale. However, the potential for
commercialization faces several challenges. The
management of such strains in consistent proportions is a
significant challenge. Furthermore, preparing a mixture
of bacterial strains is more advantageous than single
strain-based formulations because it allows interaction
between them. In addition, before commercialization, it
requires monitoring and other management practice
considerations, further refinement of the final product,
confirmation of no toxicological impacts, other
formulation considerations for delivery, and registration
for regulatory approval (Backer et al., 2018).

Considering the unwillingness of many consumers
worldwide to consume genetically modified organisms, it
might be beneficial to utilize either organic or genetically
modified plant growth-promoting bacteria in the near
future. Furthermore, it can promote growth by reducing
plant ethylene levels or minimize disease by inducing
resistance genes rather than modifying the plant's genetics.
Implementing molecular engineering approaches for plants
is still challenging because they have wide varieties and
breeding materials that must be adapted due to their
susceptibility to biotic and abiotic stresses. It is much more
sensible to modify the plant growth-promoting bacteria.

Conclusion

The biological approach  offers  excellent
opportunities to use bacteria, fungi, yeast, and other
microbial consortia as sustainable plant enhancement
agents. Under various agricultural stresses, ACCD-
producing microbes can potentially improve plant
productivity. Several reports showed successful
experiments in laboratory and greenhouse settings on
using ACCD-producing microbes. However, knowledge
concerning how to employ ACCD-producing microbes
on-site effectively is still limited. It is recommended to
select appropriate microbial strains for the target stress,
investigate the additional supportive traits in potential
microbes, formulate effective microbial consortia, and
prepare microbial biomass for easy and successful field
application. Finally, research about developing ACCD-
producing inoculants into commercial biofertilizers is
encouraged to overcome several challenges in microbial
strain management and pre-commercial preparations.
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