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Abstract

Wildfire driven ecological changes are a common phenomenon in Himalayan subtropical pine forests. These fires frequently alter
the soil carbon pools and are major drivers of carbon losses and gains in these forests. Carbon losses due to wildfires had been studied
in the past but detailed information on net carbon gains in the form of Pyrogenic Carbon (PyC) is limited. The present study was
visualized to fill the information gap existing in this regard. The study was conducted using grid node sampling in a Himalayan
subtropical pine forest in northeastern Pakistan. Over hundred soil samples were collected at two depths (0-15cm) and (16-30cm) in a
composite manner. The soil samples were analysed and relationship of PyC with soil nitrogen, phosphorous, potassium, soil pH and
soil EC was explored through use of ensemble-learning algorithms, a robust machine learning method based on artificial intelligence
technology. We used Random Forest (RF) model which generates predictions from multiple decision trees built simultaneously and
Extreme Gradient Boosting (XGBoost) algorithm in which decision trees are built in a sequence one after another leading to higher
accuracy. Our results indicated that overall RF in spite of its ruggedness yielded models that are more promising. We found a
significantly positive relationship of PyC with soil nitrogen and phosphorus, while PyC did not meaningfully explained variations in
soil potassium, soil pH, and soil EC. We observed PyC stocks decreased with increasing soil depth. This study provided information
on least studied carbon fraction in Himalayan forests by reporting its stock estimates and their relevance to selected soil characteristics.

This will help in understanding the impacts of wildfire driven changes in Himalayan ecosystem.
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Introduction

Himalayan pine forests are adapted to repeated
wildfires of low severity with majority of mature trees
surviving frequent burns (Chandran et al., 2011; Fule et al.,
2021). The south-west facing slopes, however, are more
prone to fire ignitions (Kumar et al., 2015). Wildfires in
subtropical pine ecosystem have wide-ranging ecological
implications. They significantly alter understory with
positive impacts on the floristic composition as less-
frequent fires ensure rich diversity and more-frequent fires
result in prevalence of fire tolerant species (Gupta et al.,
2009; Kumar & Pandey, 2022; Bargali et al., 2022; Hussain
et al., 2024). These fires are major driver of changes in
aboveground and belowground carbon stocks as well as
accumulate more soil carbon compared to aboveground
stocks (Shah et al., 2014). Wildfire driven soil carbon
dynamics has been extensively explored in Himalayan pine
forests with major focus on soil organic carbon (SOC)
which tends to decrease with the increasing age of stands
and altitude (Sheikh et al., 2012; Amir et al., 2019). Soil
organic carbon stocks decrease in post fire scenarios and
subsequently recover over time (Kumar et al., 2013;
Sharma et al., 2022). Soil carbon losses in these areas are
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recovered through variety of mechanisms including
formation of pyrogenic carbon (PyC) or Charcoal (Vadrevu
et al., 2012; Aryal et al., 2018;). However, the quantity of
carbon added to soil as PyC by frequent biomass burning
remains poorly estimated and demands investigations
regarding its relevance to the soil characteristics and
regeneration dynamics. As an important fraction of SOC in
forested ecosystems across the globe, PyC influences soil
properties. It influences nitrogen (N) cycling by adsorption
of non-polar organic compounds in post fire scenarios
although the effects may vary with ecosystem and soil depth
(Butterbach-Bahl et al., 2011; Pingree & De Luca, 2017).
The PyC-NH;3 covalent bonding is another significant
mechanism in this regard (Hestrin et al., 2019). Pyrogenic
carbon also influences the soil phosphorous (P) by
facilitating its mineralisation processes, its effects on soil
potassium (K) through entrapment of the nutrient rich water
has also been documented (Fox et al., 2011; Sardans &
Penuelas, 2015; Butler et al., 2018; Li et al., 2018; Zhang
etal.,2019; Paramisparam et al., 2021). Significant changes
in soil pH and electrical conductivity (EC) have been
studied in response to varying PyC fluxes (Gundale &
DeLuca, 2006; Li et al., 2018; Shahid et al., 2018; Neina,
2019; Gogoi et al., 2019).
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Pyrogenic carbon has a profound effect on plant growth
and functioning that is mainly dependent on its quantity and
some other related factors like concentration of base cations,
N immobilization and liming (Gale & Thomas, 2021). This
combined effect results in improvement of photosynthesis
rate (Licht & Smith, 2020). Generally, PyC strongly
influence the germination of pines and oaks (Reyes et al.,
2015). Since, wildfires in the Himalayan subtropical pine
forests is a common phenomenon there is no available
information on wildfire derived PyC stocks and their
relevance to soil and existing vegetation dynamics. The
study provided the critical information for understanding
how certain soil characteristics are influenced by PyC and
how this, in turn, affects the regenerating pines in these
forests. In this study, we employed systematic sampling and
ensemble-learning algorithms to achieve the key objectives
of understanding the influence of wildfire-derived PyC on
vital soil characteristics and regeneration stock in the
Himalayan subtropical pine forest ecosystem.

Material and Methods

Description of the study area: The study area was
comprised of two sampling sites in the Himalayan foothills
of northeastern Pakistan. One site was located in Margalla
Hills National Park, and the other was in the adjacent Ghora-
Gali Forest (Fig. 1). Margalla Hills National Park (MHNP)
is in the easternmost foothills of the Himalayas Range, and
covers an area of 17, 386 ha with an altitudinal range of 450-
1580 m. The climate of Site-I was dry sub-tropical, with an
annual average precipitation of 1200 mm, mostly falling in
the monsoon season. The mean minimum temperature in
January was 3.4°C and mean maximum temperature in July
was 34.3° (Ali et al., 2022). Geology is mostly Mesozoic to
early Cenozoic (meta) sediments, including limestones,
sandstones, slates and phyllites (Ali, 2014). Soils are
principally moderately alkaline Entisols and Inceptisols,
erosion rates are locally high (Ellis et al., 1994). The
vegetation of the national park consists of scrub vegetation
at lower altitudes and pine stands at higher altitudes. Site-1I
is located in Ghora-Gali (forest subdivision in district
Murree), which covers an area of 4606.61 ha. The average
annual precipitation at Site-II is ~1640 to 1904 mm, with
most falling during the July to August (Monsoon period). At
both sites, vegetation was dominated by Pinus roxburghii
(chir pine) and associated broadleaf species like Quercus
glauca, Quercus incana and Pistaciachinensis integerrima.
Understory vegetation was dominated by shrubs, with
common species being Myrsine afiicana, Carissa spinarum,
Berberis lycium, Rubus ellipticus, and Dodonaea viscosa
(Rahman et al., 2022). The herbage dominated by
Malvastrum coromandelianum, Podophyllum emodi and
Pupalia lapacea whereas most common grasses included
Tripogon filiformis, Chrysopogon aucheri, Phacelurus
speciosus and Setaria glauca (Siddiqui et al., 2009; Bhatti et
al.,2017; Khan et al., 2022).

Recurring fires are a common phenomenon in the
pine-dominated stands and chir pine is believed to be
adapted to frequent low severity burns mostly driven by the
desire of locals for shifting cultivation and promoting
forage production (Singh et al., 2023). A study by Fule et
al., (2021) showed that these forests support a mean fire
interval of less than 6 years. The ecosystem falls under the
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Fire Regime 1 category characterized by Garcia et al.,
(2022) and is attributed by a short fire season, lower burned
area, medium-low severity fires, small fire patches and
high degree of variability over the years. Among the global
fire pyromes identified by Archibald et al., (2013) the
study area falls under the ICS (Intermediate-cool-small)
pyrome which is marked by the average FRI (Fire Return
Interval) of 12 years.

Methods

The study was designed as a quasi-experiment due to
lack of control on the treatment which is PyC produced
from wildfires. Quasi-experimental design is widely
applicable in studies related to fire ecology and is
considered reliable for inferences (Butsic et al., 2017).

Soil samples were collected systematically by
employing grid node sampling scheme to minimize the
selection bias in the experiment and grids of size 0.006°
(664.48 x 664.48 meters Cartesian distance) were laid out
by employing QGIS version 3.2.1, 2018. The sampling
plan was an integration of grid and composite sampling to
minimize experimental error (Carter & Gregorich, 2007).

The organic layer was removed and 10 subsamples
were collected from marked one ha circular plot on each
grid node at (0-15 cm) depth A and (16-30 cm) depth B
(Palmer et al., 2002; Cools & DeVos, 2016). These
subsamples were mixed together to prepare a
representative composite sample weighing one kilogram,
sealed in polythene bags, and later transported to the
laboratory for storage and further analysis. After
compositing, the number of collected samples was 63 for
Site-I and 39 for Site-II.

Pyrogenic carbon in the mineral soil samples was
quantified through the weak digestion method (Kurth et al.,
2006). The soil samples were air-dried and passed through
a 2mm sieve, pulverized and ball milled. One g of ball
milled samples were digested in a solution of 10 milli-litres
(ml), 1 molar (M) Nitric acid and 20 ml of (30%) Hydrogen
peroxide. The digestion lasted around 16 hours at 100°C.
The digested and undigested samples were subjected to
elemental analysis for total carbon (TC) using an elemental
analyzer (LECO-CS-300) at Hydrocarbon Development
Institute Pakistan (HDIP), Islamabad. The quantity of PyC
was calculated using the Eq. 1 (Abney ef al., 2019).

PyC (%) = TCP X PostDMass + PreDMass Eq. 1

Where: PyC = Pyrogenic carbon in percentage, TCP =
Total carbon in digested samples (%), PostDMass = mass
of soil sample after digestion (g), PreDMass = mass of soil
samples before digestion (g).

Soil pH was measured by preparing a saturated paste
of soil and employing a pH meter [Hanna Instrument HI
2211pH/ORP meter] (United States Salinity Laboratory
Staff, 1954).

Total N was estimated using a three-gram soil sample
that underwent wet oxidation with sulfuric acid and a
digestion catalyst, converting organic nitrogen into
ammonium. The ammonium was then quantified using the
diffusion-conductivity method. The Kjeldahl method has a
detection limit around 0.001% N (Isaac & Johnson, 1976;
Horneck & Miller, 2019).
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Fig. 1. Locality Map of study area and spatial distribution of samples across study sites.

Available K was extracted from the soil by treating a
five-gram soil sample with a neutral ammonium acetate
solution and agitating it on a shaker for five minutes. The
contents were then filtered, and the filtrate was analysed
using a flame photometer (GDV-DigiFlame2000) after
appropriate calibration (Metson, 1956).

Available P was quantified using Olsen method on a
five-gram sample. Phosphates (PO4-P) were extracted
from soil using 0.5 M sodium bicarbonate solution. The
hydroxides and bicarbonates result in desorption of
phosphate from soil particles and high pH facilitated by the
solution minimizes the absorption of phosphates.
Ammonium molybdate and potassium tartrate reacts with
orthophosphate ions. Ascorbic acid was used for the
reduction of complex. The light absorbance of blue
complex was observed using spectrometer (APEL-PD)
303S (Olsen & Sommers, 1982; Prokopy, 1995).

Soil EC was measured using a saturated soil paste and
an EC meter (Selecta-CD2002). The detection limit of this
method is around 0.01 ds m™! (Rhoades, 1982). All soil
fertility related analysis (NPK, pH and EC) were carried
out at Soil and Water Testing Laboratory for Research,
Rawalpindi, Pakistan.

Systematic sampling was carried out to gather data on
the regeneration stock of Pinus roxburghii seedlings and
saplings by demarking circular plots of nine-meter radius
for counting seedlings and saplings. The plots were

positioned on the same grids used for soil sampling and
was nested inside the circular one ha plot (British
Columbia Ministry of Forests, Lands, Natural Resource
Operations and Rural Development, 2018; Wulfsohn,
2010). The age of seedlings and saplings was determined
by whorl counts (DeYoung, 2016). The data collected from
the sample plot was up-scaled to one ha.

Data processing and analysis: The number of
observations (102) was found sufficient to fulfil the
assumptions of normality and skewness (Dodge, 2008;
Piovesana & Senior, 2018). Exploratory data analysis was
performed using R software version 4.1.2 and Origin Pro
(R core team, 2020; Originlab Corporation 2024), while the
inferential stats were carried out in R using packages
‘randomForest” and ‘Xgboost’ which are two distinct
ensemble-learning methods for modelling non-linear
relationships (Liaw & Weiner, 2002; Chen & Guestrin,
2016). Random Forest (RF) model constructed/trained 100
decision trees for each model through bootstrap
aggregation or bagging to minimise the variance. Extreme
Gradient Boosting (XGBoost) on the other hand built 500
decision trees in a sequence for each parameter through
gradient boosting to avoid overfitting. For both approaches
dataset was split into training (75%) and testing (25%) sets.
Model performance was assessed through computation of
performance metrices like R?, root mean squared error
(RMSE) and mean absolute error (MAE).
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Results

Generally, the quantity of PyC decreased with
increasing soil depth, with a mean value of 4.81+£1.64 MG
ha! for depth A and 3.49+£1.23 MG ha" for depth B.
Average N, P, K stocks decreased with increasing soil
depth. Lower pH and EC values were recorded for depth B
compared to depth A (Table 1). In regeneration stock
survey, the average count of seedlings per hectare was
higher (498.92) than that of saplings (199.18).

Application of ensemble-learning algorithms to
analyse PyC-soil relationships indicated that overall RF
through bootstrap aggregation produced higher R? values
compared to XGBoost, which relies on gradient boosting
for modelling relationships. Modelling PyC and N
relationship through RF approach yielded R? values as 0.53
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and 0.31 against depth A and B respectively, while R? from
XGBoost were 0.36 and 0.26 (Table 2). Modelling through
both approaches showed that soil P was also dependant on
PyC as R? values emerging from RF model were 0.47 and
0.36 while through XGBoost they were 0.35 and 0.22
against depth A and B, respectively. Available Potassium
on the other hand failed to exhibit any remarkable
dependency on soil PyC as the R? values were lowest
among macronutrients from both modelling approaches
across both depths (Table 2). Pyrogenic carbon failed to
exhibit any predictive power to explain variation in soil pH
and soil EC through XGBoost approach while it did exhibit
weak relationship when the data was subject to RF
modelling. Random forest performed well by yielding
comparatively lower RMSE and MAE values for all soil
parameters across both depths.

Table 1. Descriptive statistics on Pyrogenic Carbon (PyC), soil characteristics and regeneration stock.

Depth PyC N P K pH EC Seedlings | Saplings
(MG ha') | (MG ha) | (mgkg") | (mgkg™) (dsm™) | (entha') | (ent ha)
Mean A 4.81 0.79 3.56 112.03 7.24 1.01 498.92 199.18
B 3.49 0.70 3.69 119.28 7.13 1.01
D A 1.64 0.22 1.74 50.96 0.25 0.28 259.89 126.85
B 1.23 0.17 1.88 53.96 0.24 0.23
A 0.95 0.62 0.90 0.84 -0.30  0.55 0.23 0.80
Skewness
B 1.20 0.09 0.31 0.14 -0.51 2.36
. A 0.71 -0.43 0.39 2.46 -049  0.96 2.16 2.96
Kurtosis
B 1.05 -0.99 -0.85 -0.87 -0.62  10.11
. A 2.05 0.45 1.2 32 6.66 0.49 78.59 39.30
Min
B 1.62 0.35 0.9 24 6.5 0.78
. A 4.47 0.74 32 130.50 7.27 1.00 510.87 157.19
Median
B 3.24 0.68 3.6 132 7.18 0.94
Max A 10.55 1.39 8.7 312 7.7 1.92 1139.62 589.46
B 7.12 1.07 7.5 264 7.6 2.39
*Number of observations (N) = 102; cnt: count
Table 2. Model performance indicators for soil and regeneration stock.
Xgboost Random Forest
Depth R? RMSE MAE R? RMSE MAE
Nitrogen A 0.36 0.19 0.16 0.53 0.17 0.14
B 0.26 0.16 0.12 0.31 0.15 0.12
Phosphorous A 0.35 1.73 1.27 0.47 1.54 1.11
B 0.22 2.04 1.60 0.36 1.60 1.21
Potassium A 0.09 60.71 4491 0.18 51.50 40.76
B 0.04 60.72 47.43 0.03 56.28 46.12
A 0.07 0.28 0.24 0.06 0.27 0.23
pH B 0.08 0.29 0.23 0.10 0.25 0.22
Electrical conductivity A 0.05 0.37 0.28 0.12 0.24 0.21
B 0.02 0.38 0.24 0.02 0.37 0.23
Seedlings A 0.19 129.61 106.17 0.26 110.16 91.79
B 0.11 145.74 120.68 0.23 106.13 94.63
Saplings A 0.27 59.13 46.08 0.31 51.54 39.79
B 0.24 62.04 47.49 0.36 49.52 3341
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Fig. 2. Partial Dependence Plots (PDPs) from gradient boost (xgboost) for both soil depths A and B.
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Fig. 3. Partial Dependence Plots (PDPs) from RF model for all soil variables across soil depths A and B.

The analysis also yielded partial dependence plots
(PDPs) for visualising the non-linear trends among
variables of interest for both models. Partial Dependence
Plots from XGBoost indicated that soil N exhibited an
increasing trend with the increase in PyC and peaked
around 6-7 MG ha™!' and 3-4 MG ha’! of PyC for depth A
and B, respectively. Soil P achieved maximum values
when PyC concentrations were 5-6 MG ha™!' against depth
A and 3-3.5 MG ha’! against depth B. Soil K showed a
decreasing trend and its predicted values were the highest
between 5-6 MG ha! of PyC at depth A and 3.5-4.0 MG
ha! of PyC at depth B. Soil pH peaked when PyC readings
were 5-6 MG ha'! at depth A and 4-5 MG ha™! at depth B.
Soil EC didn’t increase with increasing PyC and peaked at

relatively lower concentrations of PyC (Fig. 2). The PDPs
generated from RF indicated that with increase in PyC soil
N stocks showed the increasing trend. Nitrogen stocks
peaked When values of PyC were within range of 6-7 MG
ha! at both depths. Soil P stocks also exhibited an
increasing trend, with predicted values peaking at PyC
levels of 7-8 Mg ha™" at depth A and 6—7 Mg ha™' at depth
B. Potassium stocks predicted using the RF model showed
a decreasing trend, indicating no significant influence of
PyC. They peaked at comparatively lower PyC
concentrations at both depths and declined with increasing
PyC. The highest predicted values of soil pH were
observed when PyC stocks ranged from 5-6 MG ha™! at
depth A and 4-5 MG ha'! at depth B. Electrical conductivity
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values obtained from RF model were highest at the lower
concentration of PyC (Fig. 3). The inconsistencies in PDP
curves indicate that relationships among variables were
complex and may involve other factors too, which are
discussed in section 4.

Application of RF algorithm on seedlings and saplings
data yielded better results compared to XGBoost model.
Overall seedlings and saplings showed a weak dependency
on PyC. Pyrogenic carbon concentrations at depth A
merely explained variation in density of seedlings with R?
values of 0.19 for XGBoost and 0.26 for RF model.
Seedlings did not exhibit any dependency on PyC at depth
B as the R? values were the lowest. Saplings on the other
exhibited much stronger dependency on PyC across both
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depths with higher R? values from RF model observed as
0.31 against depth A and 0.36 against depth B (Table 2).

Predicted values of seedlings through RF model were
highest when PyC values ranged between 5-6 MG ha™! at
depth A and 3.5-4 MG ha'! at depth B while saplings were
recorded the highest when PyC ranged from 7-8 MG ha™!
against depth A and 6.5-7 MG ha'! at depth B (Fig. 4).
Partial dependence plots from XGBoost model showed that
seedlings numbers per hectare peaked with PyC values
ranging from 5-6 MG ha! at depth A and 4.5-5 MG ha™! at
depth B. Predicted values for saplings were the highest
when PyC was 2-3 MG ha! at depth A and 6.5-7 MG ha'!
at depth B (Fig. 5).
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Fig. 4. Partial Dependence Plots (PDPs) from RF model for regeneration stock at depths A and B.
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Discussion

Present study is first of its kind to report PyC-soil
relationships in Himalayan subtropical pine forests
ecosystem. We employed systematic sampling and
ensemble-learning  techniques based on artificial
intelligence to investigate the effects of persisting PyC
quantities on selected soil variables in wildfire affected
pine forests. Pyrogenic carbon stock inventories from both
sites exhibited a decrease with increasing depth and this
observed decrease could be attributed to the fact that in fire
prone forested ecosystems most of PyC detected in soil
mineral horizons comes from the charring of organic layer

and above ground biomass. The PyC later on adds up to
mineral soil horizon through bioturbations (Santin ef al.,
2020). Consequently, PyC’s vertical movement in soil is
hindered by decreasing soil porosity in these forests as the
clay content increases with depth resulting in less porous
and more compacted soils below (Kumar et al., 2013). The
observed decrease in PyC with increasing depth has been
recorded in French coniferous forests (Soucémarianadin, et
al., 2019), boreal forests of northeast China (Huang et al.,
2018), Southeastern Australia (Wang et al., 2017),
ponderosa pine dominated ecosystems of pacific northwest
(Jauss et al., 2015) and temperate forests of northern China
(Shi et al., 2025).
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We found a significant relationship between PyC and
N in the study area. The presence of significant
relationships could be attributed to PyC’s observed role in
nitrogen cycling/nitrogen enhancement. Pyrogenic carbon
induced nitrogen mobilization could be through adsorption
of non-polar organic compounds (Klaus & Gundersen,
2011; Pingree & De Luca, 2017), formation of covalent
bond with ammonia gas (NHs), physical sorption or
electrostatic interactions or precipitation of ammonium
salts (Hestrin et al., 2019). Our findings are consistent with
previous studies under pine-dominated ecosystems where
investigators studied post fire PyC-N dynamics on
intermediate and long-term basis and recorded significant
increase in ammonification nitrification and nitrogen
mineralization (DeLuca et al., 2006; Michelotti & Miesel,
2015). It is also worth mentioning here that PyC did not
exhibit any significant effect on soil N pools on short term
or immediate basis even after the observed enhanced
enzyme activity (Stirling et al., 2019; Lasota et al., 2022).

The available P stocks increased with higher
concentrations of PyC in soil profile horizontally and
vertically. The PyC driven variation in P could be due to
the fire driven biogeochemical shifts resulting in P rich
soil-plant systems (Butler et al., 2018). Pyrogenic carbon
being common phenomenon in these ecosystems facilitates
the availability of P as addition of PyC tends to enhance the
sorption of P onto the sediments and the sorption capacity
of P increases with the further increase in PyC
concentrations (Zhang et al., 2019). Our findings are
consistent with numerous previous studies with observed
enhancements or alterations in soil phosphorous levels in
response to PyC additions although the effects varied based
on fire histories and time since last fire and soil type
(Makoto et al., 2011; Borchard et al., 2014; Mastrolonardo
et al.,2019; Dou et al., 2025).

The Pyrogenic carbon and K relationship dynamics
can be best explained by the porous nature of PyC which
traps the water soluble K in soil (Paramisparam et al.,
2021). The increase in bio-available K happens
immediately after the addition of PyC in two to six weeks
period and the effect may fade with time due to leaching
and active utilization of nutrients by plants justifying the
weak relationship observed in our study (Li ef al., 2018).
Borchard et al., (2014) documented altered K levels against
natural additions of PyC in Beech forests of Germany. Our
findings are also supported by numerous other studies
where investigators noted altered or significantly enhanced
levels of soil K under natural settings (Mastrolonardo et al.,
2019; Gale & Thomas, 2021).

We did not find any significant relationship between
PyC and soil pH. The lack of any significant effect of PyC
on soil pH can be due the post fire leaching down of cations
in these forests (Mastrolonardo et al., 2019). Pyrogenic
cartbon and soil pH relationships have been studied
extensively on the global scale and majority of the studies
focused on alterations in soil pH in response to the
application of PyC in laboratory or immediately after
wildfires yielding conflicting results (Makoto et al., 2011;
Borchard et al., 2014; Bryanin et al., 2022). Significant
changes in the behaviour of soil pH were recorded as a
feedback to different concentration regimes of PyC and its
physio-chemical properties (Gale & Thomas, 2021). It was
noted that pH is more prone to changes when higher

frequency of PyC amendments is added to soil as compared
to additions with lower frequency (Wang et al., 2017). The
argument itself validates our results endorsing the fact that
PyC do not affect the soil pH in long run and hence changes
in soil pH in response to PyC applications are immediate
and short lived which are harder to observe on spatial scale.
Under natural settings on landscape scale, our results are
consistent with a field study by Mastrolonardo et al.,
(2019) from beech and birch forests of Belgium.

Pyrogenic carbon and soil EC relationships have been
studied globally and most of the studies observed the
immediate responses of soil salinity to PyC applications in
the laboratory and in the field as well. Since, our study
involved spatial component with complete disregard of time
after PyC application therefore our results suggest no effect
on soil EC in the long-run, since soil EC is controlled by a
number of factors including weathering of rocks/parent
material, soil drainage and wind borne salts yielding
(Shabbir et al., 2023), hence PyC-EC lack of correlation is
plausible. Qi et al., (2017) carried out a study in South
Australian soils and found no robust correlation existing
between PyC and soil EC endorsing our study findings.

The reported weak dependency of pine regeneration
stock (seedlings and saplings) on PyC could be due to the
enhanced levels of soil phosphorous (P) and water
availability, which collectively help in the sprouting and
establishment of regeneration (Makoto et al., 2011). The
findings from our experiment are consistent with Choi et al.,
(2009) where elevated germination rates were observed in
forest soils amended with charcoal (PyC) carbon in Pinus
densiflora seedbeds. Makoto et al, (2011) reported
existence of positive correlation among Larix gmelinii/ Pinus
sylvestris number of seedlings and PyC stating it played
significant contribution towards pine regeneration.

In a similar study by Makoto et al., (2011), the
application of charcoal enhanced the growth of Gamelin
larch seedlings. Situmorang (2021) observed positive
effect of charcoal PyC application on height and diameter
of Pinus merkusii seedlings. Gale & Thomas (2021) well
explained the dependency of seedlings and saplings on PyC
in a temperate boreal forest study design, which concluded
that PyC had profound effect on the physiology and tree
foliar nutrients during early five years of growth. Five-
year-old tree saplings were affected by PyC heterogeneity
and were therefore well adapted to fires and fire related
products in the ecosystem.

Pyrogenic carbon effects on early stages of regeneration
was also observed in a meta-analytical study (Thomas &
Gale, 2015). Licht & Smith (2020) reported similar
explanations through a study designed to investigate the
effect of PyC on the growth and vigor of pitch pine seedlings
in the northerly forests of USA and observed increased water
use efficiency and photosynthetic rates.

Conclusions

Present study indicated that wildfire derived PyC
stocks in Himalayan pine forests decreased with increase
in soil depth. The increase in PyC amount proved to
enhance soil N and P stocks. Soil pH, EC, and K, however,
did not exhibit any remarkable dependency on PyC
quantities. Overall, RF model performed better in
modelling relationships among variables of interest. Pine
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seedlings and saplings showed a weak dependency on PyC
owing to our experimental design, which involved a coarse
systematic sampling. Our findings suggested that addition
of wildfire derived PyC is a potentially effective in
enhancing soil fertility and improving regeneration stocks.
Long-term observational studies and regular monitoring
can further improve land management practices through
provision of reliable data to forest managers for sustainable
management decisions.
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