THE PHYLOGENETIC RELATIONSHIPS AMONG GERMPLASM RESOURCES OF WILD RAMIE (*BOEHMERIA NIVEA* L. GAUD) IN CHINA BASED ON *trn*L-F AND ITS SEQUENCES

YU RUNQING¹, SANA ULLAH BALOCH ¹, LIU LIJUN¹, PAN QIHUI², GONG SONGLIN², ZHONG XINYUE¹, WANG BO¹ AND PENG DINGXIANG^{1*}

 ¹ MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
 ² Bast & Leaf Fiber Crops Research Institute of Jiangxi Academy Agricultural Sciences, Yichun, Jiangxi, 336000, China *Corresponding author's e-mail address:pdxiang@mail.hzau.edu.cn. Fax: +86-27-87287136

Abstract

Ramie (*Boehmeria nivea* L. Gaud) is an important fiber crop in China, which also possesses many wild species in genus *Boehmeria* Jacq. However, the taxonomic position of these species has not been settled. To determine the evolutionary relationships among the members of the genus *Boehmeria*, the combination of ITS and *trn*L-F sequences were used for molecular phylogenetic analyses of 31 ramie accessions (28 species and three varieties) including multiple materials collected in high-altitude regions that have not been previously reported (*B. clidemioides* var. *diffusa*, *B. bicuspis* and *B. longispica*). The ITS and *trn*L-F trees produced showed that *Boehmeria* was classified into four separate clusters. The Sect. *Duretia*, which has a high evolutionary level, clustered with Sects *Zoilingeriana* and *Phyllostachys*. The grouping pattern of clustering differed from traditional taxonomy and indicated possible interspecific hybridization among *Boehmeria*. We found that *B. malabarica* Wedd. var. *leioclada* of Sect. *Boehmeria* clustered into a clade with Sects. *Tilocnide*, providing solid support for the expansion of wild ramie core germplasm resources. The molecular results did not support the intraspecific geographic migration of *Boehmeria*. This study, therefore, established relationships among wild species which will help in ramie crop improvement programs. The results will be important for the collection and conservation of germplasm resources of Chinese wild ramie.

Key words: Boehmeria; trnL-F; ITS; Relationship; Germlplasm resources.

Introduction

Ramie (*Boehmeria nivea* L. Gaud) is a perennial phloem fiber crop of the Urticaceae. It is mainly cultivated in China and other Asian countries, such as the Philippines, India, Korea and Thailand (Li & Hu, 1987; Liu *et al.*, 2010). It has become an urgent task to improve ramie fiber yield and quality. This has proven difficult using the existing breeding material and technology. However, the wild resources may have excellent genes and traits not found in cultivated ramie in regard to disease and drought resistance. Therefore, wild varieties may be very valuable germplasm resources (Jiang & Jie, 2005; Yang, 2006). The study of ramie germplasm resources and the evolutionary relationships among species of the genus *Boehmeria* is of great significance for ramie breeding.

Since the establishment of Boehmeria by Jacquin, there have been great differences in its classification (Blume & Brill, 1856; Weddell, 1869; Satake, 1936). According to the morphological characteristics, Chinese ramie was classified by Wang into 32 species and 11 varieties, belonging to 5 groups: Sects Boehmeria, Tilocnide, Zoilingeriana, Phyllostachys and Duretia (Wang & Cheng, 1995). Some researchers have performed karyotyping studies (Yang et al., 2000) and isozyme analyses (Hu et al., 1991; Zeng & Hong, 2009). However, these studies were based on morphological, cytological, physiological and biochemical characteristics (Chen et al., 2011), with little evidence on the molecular level. RAPD, SSR and ISSR have been applied to the classification of wild ramie germplasm resources (Guo et al., 2003; Liu et al., 2009; Liao et al., 2010, 2014). However, many species were not included in these previous studies. The internal transcribed spacer (ITS), located between the 18S and 26S

rRNA genes, is a part of the transcription unit of nuclear ribosomal DNA, which is under limited selection pressure. The evolutionary rate of this unit is faster than that in the coding region (Baldwin et al., 1995; Varshney et al., 2005). ITS has been successfully used in studies of genetic relationships and phylogenetic research of some plant species (Jamil et al., 2014), such as Crotalaria (Shweta et al., 2013), Dianthus (Mohammad et al., 2013) and Apioideae (Galina et al., 2013). The trnL-F sequence, located in the chloroplast genome, has a moderate size and suffers little selective pressure from the outside environment, so its evolutionary rate is faster than other coding sequences. The trnL-F sequence has been widely used in the study of plant systematics (Taberlet et al., 1991; Olmstead & Palmer, 1994; Kajita et al., 1998; Bakker et al., 1999; Kenneth et al., 2005; Ivana et al., 2013; Wang et al., 2013).

At present, only the ITS of the Sect. Duretia of Boehmeria has been reported (Kang et al., 2008), and there has been no related report on cpDNA labeled by trnL-F sequences. In the past, the collection and application of Boehmeria resources mainly relied on plant materials collected in low-altitude regions. Few studies on the wild resources of high-altitude regions have been conducted, due to a lack of materials. In this study, to more clearly evaluate the genetic relationships among wild Chinese ramie germplasm resources, materials were collected from many regions, including some newly reported wild materials from high-altitude regions. The phylogenetic tree of 31 accessions of Boehmeria from different groups was first constructed using the combination of ITS and trnL-F sequences. Then, the genetic relationship was studied to provide a necessary theoretical basis for the introduction, breeding and mining of desired Boehmeria genes.

Materials and Methods

Experimental materials: The experimental materials included 28 species and three varieties of Boehmeria, which could be classified into five groups (Sects Boehmeria, Tilocnide, Zoilingeriana, Phyllostachys and Duretia), including several samples collected in high-altitude regions that have not been previously studied, (including B. clidemioides var. diffusa, B. bicuspis, B. longispica and B. macrophylla var. rotundifolia). This is the first report concerning B. densiglomerata, B. macrophylla and B. bicuspis. Pilea was considered as an outgroup (Fig. 1, Table 1). The experimental materials were from the Boehmeria Wild Germplasm Resources Repository in Huazhong Agricultural University. Additional materials were from the China Bast & Leaf Fiber Crops Research Institute (Jiangxi Academy of Agricultural Sciences, China).

DNA extraction and PCR amplification: Genomic DNA was isolated from leaves using the modified CTAB method of Doyle & Doyle (1987). The integrity and quality of DNA were evaluated by electrophoresis on 1% agarose gels. Gel images were captured on a Gene Genius imaging system (Gene Co. Ltd., Hong Kong, China). The DNA was stored at -20° C.

The primers of ITS were designed according to the general primers reported by White (1990). The primer sequences were 5 -TCC GTA GGT GAA CCT GCGG-3 for ITS1 and 5 -TCC TCC GCT TAT TGA TAT GC-3 for ITS4. The primers of *trnL*-F were designed according to the general primers reported by Fernández *et al.* (2001). After comprehensive comparisons, the primers were designed; primer T1: 5 -AAA ATC GTG AGG GTT CAA GTC-3 and T2: 5 -GAT TTG AAC TGG TGA CAC GAG-3 , synthesized by Shanghai Sunny Biotechnology Co. Ltd. (Shanghai, China).

Fig. 1. Map of China with red dots showing locations of collecting areas for samples of Boehmeria used in this study (source: Google Earth).

Group	Species	Collection	Coordinate	High	GenBan	k Number
					trnL-F	ITS
Sect. Boehmeira	B. glomerulifera	Menglun Yunnan	N22°14'E100°77'	745	KF782842	KF835855
	B. malabarica Wedd. var. leioclada	Menghai Yunnan	N22°26'E100°42'	1230	KF782859	KF835872
Sect. Tilocnide	B. nivea var. nipononivea	Mingyueshan Jiangxi	N27°81'E1114°42'	980	KF782847	KF835860
	B. nivea var. tenacssima	Lingyinshan Hangzhou	N25°22' E109°18'	126	KF782848	KF835861
	B. nivea var. viridula	Douan Guangxi	N23°93'E108°25'	145	KF782849	KF835862
	B.nivea	Wuhan Hubei	N30°58'E114°30'	30	KF782872	KF835885
Sect. Zollingerianae	B. zollingeriana	Nanxiang Yunnan	N21°96'E100°45'	1236	KF782843	KF835856
	B. blinii	Lingyun Guangxi	N24°34'E106°56'	455	KF782861	KF835874
Sect. Phyllostachys	B. bicuspis	Linzhi Tibet	N29°65'E94°36'	2358	KF782845	KF835858
	B. clidemioides var. diffusa	Panzhihua Sichuan	N26°39' E101°42'	1931	KF782862	KF835875
	B. pseudotricuspis	Qianlingshan Guizhou	N26°58'E106°68'	1200	KF782867	KF835880
Sect. Duretia	B. spicata	Nanshan Shandong	N36°108'E120°47'	893	KF782844	KF835857
	B. gracilis	Qianlingshan Gunzhou	N26°60'E106°68'	1065	KF782846	KF835859
	B. tricuspis	Zhangjiajie Hunan	N25°20'E109°27'	800	KF782850	KF835863
	B. formosana Hayata var. formosana	Rongan Guangxi	N22°99'E102°39'	183	KF782851	KF835864
	B. macrophylla	Lvchun Yunan	N23°00'E102°13'	1098	KF782852	KF835865
	B. longispica	Panzhihua Sichuan	N26°39'E101°42'	1931	KF782853	KF835866
	B. densiflora	Xinbei Taiwan	N25°05'E121°26'	327	KF782854	KF835867
	B. densiglomerata	Nandan Guangxi	N24°97' E107°11'	567	KF782855	KF835868
	B. pilosiuscula	Puwen Yunnan	N24°72'E118°62'	880	KF782856	KF835870
	B. siamensis	Hongjing Yunnan	N21°58'E101°12'	740	KF782857	KF835871
	B. macrophylla Hornem. var. canescens	Hongjing Yunnan	N21°58'E101°12'	570	KF782858	KF835873
	B.macrophylla Hornem. var. rotundifolia	Lingzhi Tibet	N29°51'E93°27'	2100	KF782860	KF835874
	B. platyphylla	Panzhihua Sichuan	N26°39'E101°42'	1720	KF782863	KF835876
	B. strigosifolia var. mollis	Longyan Fujian	N25°08'E117°01'	1370	KF782864	KF835877
	B. polystachya	Bama Guangxi	N24°08'E107°15'	250	KF782865	KF835878
	B. clidemioides Miq. var. clidemioides	Jingan Jiangxi	N29°05'E115°20'	281	KF782866	KF835880
	B. formosana var. fuzhouensis	Wanzai Jiangxi	N28°11'E114°44'	500	KF782868	KF835881
	B. platanifolia	Yifeng Jiangxi	N28°39'E114°80'	380	KF782869	KF835882
	B. macrophylla var. scabrella	Menglun Yunnan	N21°58'E101°12'	700	KF782870	KF835883
	B. strigosifolia	Liuzhou Guangxi	N24°32'E109°41'	55	KF782871	KF835884
Out group	Pilea. cadierei	Menglun Yunnan	N21°58'E101°12'	570	KF835854	KF835853

Table 1. List of 32 Boehmeria accessions used in the study.

Phylogenetic analysis: The Align tool using clustalW in MEGA 5.0.5 (Tamericanura et al., 2011) was used to perform the multiple sequence alignment. The gaps were treated as missing data. The variation sites and parsimony informative sites of the ITS and trnL-F sequences were calculated by DnaSP v.5.10 (Librado & Rozas, 2009). The consistency (CI) and retentivity (RI) were determined by the construction of a matrix using PUAP4.0 (Swofford, 2001). The phylogenetic analyses of ITS and trnL-F sequences from all plant materials were conducted by the Neighbor-Joining (NJ) method (Austerlitz et al., 2009). The reliability of each clade was estimated by 1000 bootstrap replicates. The partition homogeneity test was performed by PUAP4.0 to analyze the correlation of trnL-F and ITS. Finally, a phylogenetic tree with support rates > 50% was formed.

Results

trnL-F sequence analysis: The *trnL-F* sequences of 32 individuals were tested in this study, including 31 accessions of Chinese *Boehmeria* and one species of *Pilea* (GenBank accession numbers are in Table 1). The length was 487 bp after the alignment. There were 31 (6.3%) polymorphic variation sites, including 16 single informative sites and 15 parsimony informative sites (Table 2). Among the single informative sites, there were 16 with two variants and no site with three variants. Among the parsimony

informative sites, there were 13 with two variants and two sites with three variants (Table 3).

ITS sequence analysis: The ITS sequences of 32 individuals were amplified, including 31 accessions of Chinese *Boehmeria* and one species of *Pilea* (GenBank accession numbers are in Table 1). After a manual examination and alignment, the length was 717 bp. There were 269 (37.5%) polymorphic variation sites, including 116 single informative sites and 153 parsimony informative sites (Table 2). Among the single informative sites, there were 107 with two variants, eight with three variants and one site with four variants. Among the 153 parsimony informative sites, there are 88 with two variants, 57 with three variants and eight sites with four variants (Table 3).

Analysis of the combination of ITS and *trn*L-F sequences: The result of the partition homogeneity test was p = 0.40, indicating that the two datasets (*trn*L-F and ITS) showed no significant incongruence. We applied the NJ method for the phylogenetic analysis of the *trn*L-F and ITS sequences. The constructed phylogenetic tree (Fig. 2) had a tree length of 855, CI of 0.7532 and RI of 0.7925. The consistency index after readjustment (RC) was 0.5969 (Table 3).

transcribed spacer (115), trnL-F and combined data sets.							
Parameter	ITS	trnL-F	Combines				
Number of accession	31	31	31				
Range of sequence length (bp)	717	487	1204				
Number of variable sites (%)	269 37.5%	31(6.3%)	300(24.9%)				
Number of singleton variable sites (%)	116(16.1%)	16(51.6%)	132(11.0%)				
Number of informative sitesites (%)	153(21.4%)	15(48.4%)	168(13.9%)				
Consistency index (CI)	0.736	0.8475	0.7532				
Retention index (RI)	0.7815	0.8421	0.7925				
Rescaled consistency index (RC)	0.5752	0.7136	0.5969				
Homoplasy index (HI)	0.264	0.1525	0.2468				

 Table 2. Comparison of phylogenetic information for *Boehmeria* species from internal transcribed spacer (ITS), trnL-F and combined data sets.

 Table 3. Polymorphism and Indel sites of internal transcribed spacer (ITS) and trnL-F

Variable site	Variable type	Site numbers		
variable site	variable type	ITS	trnL-F	
	Two variants	107	16	
Singleton variable site	Three variants	8	0	
	Four variants	1	0	
	Two variants	88	13	
Informative site	Three variants	57	2	
	Four variants	8	0	

A total of 28 species and three varieties of Boehmeria were divided into four clusters. Pilea, as the outgroup, was first separated from the wild Boehmeria in the clustering process. The species of Sect. Duretia were separated from those of other groups, forming a single large clade, with a bootstrap rate of 100%. In clade I were clustered B. bicuspis, B. clidemioides var. diffusa, B. pseudotricuspis and B. zollingeriana with a bootstrap rate of 99%. The other species of Sect. Duretia were clustered into clade II. Clade III was formed by *B. glomerulifera* and *B. blinii* from different groups, with a bootstrap rate of 95%. One species (B. nivea) and three B. nivea varieties (nipononivea, tenacssima and viridula) of Sect. Tilocnide were separated from the first large clade and clustered into clade IV with B. malabarica var. leioclada, with a support rate of 88%.

Discussion

China is a center of diversity for *Boehmeria*, with abundant wild ramie germplasm resources. This provides a good basis for the breeding of new varieties of ramie (Lai *et al.*, 2000). Many available germplasm resources are a key foundation in any breeding process (Shinwari *et al.*, 2014). The collection and study of ramie wild germplasm resources is extremely significant for future genetic breeding (Liu *et al.*, 2003). Indeed, dense sampling of wild populations across the geographical range may shed light on the path of ramie domestication and suggest a specific geographical origin.

At present, there is disagreement over the origin and evolution of *Boehmeria* plants due to the lack collection of wild resources. Chinese *Boehmeria* plants include 32 species and 11 varieties (Wang, 1981). Several wild samples, used in the present study, were collected in different regions since 2000, including Guangxi, Yunnan, Guizhou, Sichuan, Hunan, Jiangxi and Tibet. The study materials included 28 species, with *B. densiglomerata*, *B. macrophylla* and *B. bicuspis* reported for the first time. The data was comprehensive and provides a supplement to previous studies.

The combination of ITS and trnL-F sequences adequately analyzed the genetic relationships among Chinese wild Boehmeria. There were some differences in the clustering results of ITS and trnL-F sequences, probably caused by different variation in informative sites contained in different molecular markers (Peng et al., 2012). The results clearly showed that there were a greater number of informative sites contained in the combination of ITS and *trn*L-F than in a single sequence. Since the combined diversity estimate based on several molecular markers covers more genetic regions than a single marker alone, the genetic distance estimate based on all the molecular markers most likely gives the most unbiased distance estimate (Lim et al., 2007; Abhinandan et al., 2013; Sultan et al., 2013). In this study, the correlation analysis result (p = 0.40) indicated that the combination of ITS and *trn*L-F sequences could provide a greater number of informative sites.

Boehmeria plants are generally distributed in the low altitudes of tropical and subtropical regions (Liu et al., 2003), and the acquisition and application of *Boehmeria* samples has mainly concentrated in these regions. Few studies have been conducted on the wild resources in high-altitude regions. In this study, multiple species, such as B. clidemioides var. diffusa, B. bicuspis and B. longispica, were collected from high-altitude regions. Their *trn*L-F and ITS sequences were clustered into the same large clade, although their morphology and habitats differ from the wild Boehmeria plants from low-altitude regions. Variation indicative of intraspecific geographic migration was not found in the ITS and trnL-F sequences. This indicates that these sequences of Boehmeria are conserved, conforming to the DNA barcode characteristic of ITS (Kress & Erickson, 2007; Anon., 2011). Additionally, trnL-F sequences have been amplified in a number of species (Liu et al., 2010). In this study, not only was the amplified trnL-F fragment of Boehmeria relatively short, but it could be used to distinguish the variation between species. Therefore, it is suggested that trnL-F can be used as a DNA barcode in Boehmeria.

According to the morphological characteristics, *Boehmeria* was divided into five independent groups by Wang (1981) – a result complemented by the molecular results of the present study. However, unlike the morphological analysis, the Sects *Duretia*, *Zoilingeriana* and *Phyllostachys* clustered into the same clade, which does not fully support the view of Wang.

Fig. 2. NJ phylogenetic tree based on the combined ITS and trn*L*-*F* dataset. The tree has 855 steps, with CI = 0.7532 and RI = 0.7925. Base substitutions are indicated above branches. Bootstrap values are indicated below branches. (a) Sect. *Boehmeria*; (b) Sect. *Tilocnide*; (c) Sect. *Zollingeriana*; (d) Sect. *Phyllostachys*; (e) Sect. *Duretia*

Morphologically, Sect. *Boehmeria* is considered the most primitive group of *Boehmeria* (Wang, 1981, which is supported by the SRAP results (Liao *et al.*, 2010). In the present study, *B. glomerulifera* of Sect. *Boehmeria* formed a single clade at the roots, indicating its primitiveness. Additionally, our results showed that *B. malabarica* var. *leioclada* of Sect. *Boehmeria* as well as one species and three varieties of Sect. *Tilocnide* were clustered into a clade. This indicates that the phylogenetic relationship of the two groups is close. These results provide molecular evidence for the view of Wang & Cheng (1995) and provide important information for the expansion of wild core germplasm resources in *Boehmeria* breeding.

As the largest group in Boehmeria, Sect. Duretia is

considered the group at the highest evolutionary level (Wang, 1981). In combination with the morphological study, two types of genetic relationship patterns have been proposed: the Sect. *Phyllostachys*–Sect. *Duretia* pattern and the Sect. *Duretia*–Sect. *Phyllostachys* pattern (Wang, 1981; Zhang, 1998). Sect. *Phyllostachys* was clustered into the first group with Sect. *Duretia*, indicating a close relationship between these two groups. However, the group's evolutionary pattern, based on morphology, is not supported at the DNA level by the analysis of ITS and *trnL*-F sequences in the present study. Our results are not consistent with the RAPD results (Guo *et al.*, 2003); however, they are supported by the SARP results (Liao *et al.*, 2010).

Sect. Zoilingeriana generally has bush morphology.

Unlike other groups, the leaves in this group are alternate or opposite (Wang & Cheng 1995). In this study, the *B. zollingeriana* of Sect. *Zoilingeriana* and Sects *Duretia* and *Phyllostachys* were clustered into the same clade, showing their close relationship (Fig. 2, clade I). Additionally, *B. blinii* of Sect. *Zoilingeriana* was closely related to *B. glomerulifera* of Sect. *Boehmeria* (Fig. 2, clade III). These indicate the possibility of interspecific hybridization among *Boehmeria*. The molecular biological classification provides additional evidence for the traditional morphological classification (Turi *et al.*, 2012). The study results are of great significance for the collection and conservation of wild Chinese ramie germplasm resources, and the opening of new fields of study and use of ramie.

Conclusion

There is problematic taxonomy with some species of genus *Boehmeria*. This study aimed at establishing information on the phylogeny and evolution of this group using the combination of *trnL*-F and ITS sequences. This study incorporated the most comprehensive plant materials so far used, making it a good supplement to previous studies. Since little is known about the phylogenetic relationship of wild germplasm resources of ramie in China, this study on the evolutionary relationships in the sections of the genus will improve our understanding of taxonomic demarcations in *Boehmeria* and enable exploring of new fields in the study and use of ramie.

Acknowledgements

This research was supported by the National Natural Science Foundation of China (31000731) and China Agriculture Research System (CARS-19-E12). The authors gratefully acknowledge the help, encouragement and provision of wild material by Professor Pan Qihui.

References

- Abhinandan, M.T., T. Antariksh, K. Anoop, S. Akanksha, S. Shivani, B.C. Lai and R. Sribash. 2013. The Internal Transcribed Spacer (ITS) Region and trn HpsbA Are Suitable Candidate Loci for DNA Barcoding of Tropical Tree Species of India. *PLOS one*, 2(8): e57934.
- Anonymous. 2011. China Plant BOL Group. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proceedings of the National Academy of Scienceences, USA. 108: 19641-19646.
- Austerlitz, F., O. David, B. Schaeffer, K. Bleakley and M. Olteanu. 2009. DNA barcode analysis: a comparison of phylogenetic andStatmaticsistical classification methods. *BMC Bioinformatics*, 10 (Suppl 14): S10.
- Bakker, F.T., A.G. American and L.C. Dausherty. 1999. A trnL-F based phylogeny for species of Pelargonium (Geraniaceae) with small chromosomes. *Plant Syst. Evol.*, 216: 309-324.
- Baldwin, B.G., M.J. Sanderson and J.M. Porter. 1995. The ITS region of nuclear DNA a valuable source of evidence on angiosperm phylogeny. *Ann Missouri Bot Gard*, 30: 247-277.
- Blume, C.L. and J. Brill. 1856. *Museum Botanyanicum Lugduno*. Batavum. *Charleston: BiblioBazaar.*, 194-227.

- Doyle, J.J and J.L. Doyle 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. *Phytochemistry Bull.*, 19: 11-15.
- Fernández, I.Á., J.F. Aguilar, J.L. Panero and G.N. Feliner. 2001 A phylogenetic analysis of Doronicum(Asteraceae, Senecioneae) based on morphological, nuclear ribosomal (ITS), and chloroplast (trnL-F) evidence. *Mol. Phylogent. Evol.*, 20: 41-64.
- Galina, V., Degtjareva, V. Eugene, Kljuykov, H. Tahir, M. Carmen, R. Valiejo, G. Michael and Pimenov. 2013. ITS phylogeny of Middle Asian geophilic Umbelliferae-Apioideae genera with comments on their morphology and utility of psbA-trnH sequences. *Plant Syst. Evol.*, 299: 985-1010.
- Guo, AP., P. Zhou, X.Y. Li, Z.D. Li and X.Q. Zheng. 2003. RAPD analyses of 17 rAmericanie (Boehmeria nivea) cultivars. J. Agric. Biotechnol., 11: 318-320.
- Hu, N,S., Z.R. Zhu, Q.H.Guo and Z.D. Li. 1991. First study on the evolu tion of ramie peroxidase isozymes. Acta Sci Nat Univ Norm Hunan, 14: 73-77.
- Ivana, R., S. Zlatko, M. Gerald and L. Zlatko. 2013. Phylogenetic relationships in Brassicaceae tribe Alysseae inferred from nuclear ribosomal and chloroplast DNA sequence data. *Mol. Phylogent. Evol.*, 69: 772-786.
- Jamil, I., S. Qamarunnisa, A. Azhar, Z.K. Shinwari, S.I. Ali and M. Qaiser. 2014. Subfamilial relationships within Solanaceae as inferred from *Atpβ-rbcL* Intergenic Spacer. *Pak. J. Bot.*, 46(2): 585-590.
- Jiang, Y.B. and Y.C. Jie. 2005. Advances in research on the genetic relationships of Boehmeria in China. J. Plant Genet. Resour., 6: 114-118.
- Kajita, T., K. Kamiya and K. Nakamura. 1998. Molecular phylogeny of Dipteroearpaceae in Southeast Asia based on nucleotide sequences of mark, trnL intron and trnL-trnF intergenic spacer region in chloroplast DNA. *Mol. Phylogent. Evol.*, 10(2): 202-209.
- Kang, D.L., Q.H. Pan and Z.L. Yi. 2008. Phylogenetic Study on Sect. Duretia (Boehmeria, Urticaceae) Based on nrDNA ITS Sequences. J. Wuhan Bot. Res., 26(5): 450-453.
- Kenneth, J., H. Wurdack, Petra and W. Mark. 2005. Molecularecular phylogenetic analysis of uniovulate euphorbiaceae (euphorbiaceae sensu stricto) using plastid rbcl and trnl-f dna sequences. *Am. J. Bot.*, 92(8): 1397-1420.
- Kress, W.J. and D.L. Erickson. 2007. A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. *PLOS one*, 2: e508.
- Lai, Z.J., Q.H. Pan and X.B. Sun. 2000. Characteristics and utilization of the wild Boehmeria germplasms in China. *Acta Agriculturae Universitatis Jiangxiensis*, 12: 11-16.
- Li, T. and J. Hu. 1987. *Morphology of Fiber Crops* (in Chinese). BeiJing:Scienceence Press.
- Liao, L., T.J. Li, J. Zhang, L.L. Xu, H.S. Deng and X.J. Han. 2014. The domestication and dispersal of the cultivated ramie (*Boehmeria nivea* (L.) Gaud. In Freyc.) determined by nuclear SSR maker analysis. *Genet. Resour. Crop Evol.*, 8: 131-142.
- Liao, L., T.J. Li, Z.W. Zhao, Y.B. Chen, L.L. Xu and Q.H. Pan. 2010. Phylogenetic relationship of rAmericanie and its wildrelatives based on SRAP markers. *Guihaia*, 30(6): 791-795.
- Librado, P and J. Rozas. 2009. DnaSP v5:a software for comprehensive analysis of DNA polymorphism data. *Bioinformatics*, 25: 1451-1452.
- Lim, W., K.W. Mudge and L.A. Weston. 2007. Utilization of RAPD markers to assess genetic diversity of wild populations of North Americanerican Ginseng (Panax)

quinquefolius). Planta Med., 73: 71-76.

- Liu, F.H., Z.J. Li, Q.Y. Liu, H. He, X.N. Liang and Z.J. Lai. 2003. Introduction to the wild resources of the genus *Boehmeria* Jacq. in China. *Genet. Resour. Crop. Evol.*, 50: 793-797.
- Liu, L.J., B. Wang, X.X. Wang and D.X. Peng. 2009. Genetic Diversity Americanong wild resources of the genus *Boehmeria* Jacq. from West China determined using inter-simple sequence repeat and rapid American plification of polymorphic DNA markers. *Plant Prod. Sci.*, 12(1): 88-96.
- Liu, Y., H.F. Yan, T. Cao and X.J. Ge. 2010. Evaluation of ten plant barcodes in Bryophyta (Mosses). J. Syst. Evol., 48: 36-46.
- Mohammad, F., B. Maryam, V. Jamil, R.J. Mohammad and M. Farshid. 2013. The evolutionation of *Dianthus polylepis* complex (Caryophyllaceae) inferred from morphological and nuclear DNA sequence data:one or two species? *Plant Syst. Evol.*, 299: 1419-1431.
- Olmstead, R.G. and J.D. Palmer. 1994. Chloroplast DNA systematicsematizes: review of methods and data analysis. *Am. J. Bot.*, 81(9): 1205-1224.
- Peng, H.S., Q.J. Yuan, Q.Q. Li and L.Q. Huang. 2012. Molecularecular Systematicsematics of Genus Atractylodes (Compositae, Cardueae): evidence from internal transcribed spacer (ITS) and trnL-F Sequences. *Inter. J. Mol. Sci.*, 13: 14623-14633.
- Satake, Y. 1936. *Boehmeria japonica Journ*. Science Univ Tokyo Sect 111. 4: 467-542.
- Shinwari, Z.K., H. Rehman and M.A. Rabbani. 2014. Morphological traits based genetic diversity in safflower (*Carthamus tinctorius* L.). *Pak. J. Bot.*, 46(4): 1389-1395.
- Shweta, S., K. Arun, R. Pandey, Geeta and E.M. Mark. 2013. Molecularecular systematicsematics of Indian Crotalaria (Fabaceae) based on analyses of nuclear ribosomal ITS DNA sequences. *Plant Syst. Evol.*, 299: 1089-1106.
- Sultan, M., N. Zakir, M.A. Rabbani, Z.K. Shinwari and M.S. Masood. 2013. Genetic diversity of guar (*Cyamopsis* tetragonoloba L.) landraces from Pakistan based on RAPD markers. Pak. J. Bot., 45(3): 865-870.

- Swofford, D.L. 2001. PUAP: Phylogenetic analysis using parimony (and other methods).version 4.0b8. Sinauer Associates, Sunderland.
- Taberlet, P.T, L. Gielly and G. Pautou. 1991. Universal primers for Americanplification of three non-coding regions of chloroplast DNA. *Plant Mol. Bio.*, 17: 1105-1109.
- Tamericanura, K., D. Peterson, N. Peterson, G. Stecher and M. Nei. 2011. MEGA5: Molecularecular evolutionutionary genetics analysis using maximum likelihood, evolutionutionary distance, and maximum parsimony methods. *Mol. Bio. Evol.*, 28: 2731-2739.
- Turi, N.A., Farhatullah, M.A. Rabbani and Z.K. Shinwari. 2012. Genetic diversity in the locally collected *Brassica* species of Pakistan based on microsatellite markers. *Pak. J. Bot.*, 44(3): 1029-1035.
- Varshney R.K., A. Graner and M.E. Sorrells. 2005. Genic microsatellite makers in plants: features and application. *Trends in Biotechnology*, 23: 48-55.
- Wang, M., H.X. Zhao, L. Wang, T. Wang, R.W. Yang, X.L. Wang and L. Zhang. 2013. Potential use of DNA barcoding for the identification of Salvia based on cpDNA and nrDNA sequences. *Gene*, 528: 206-215.
- Wang, W.C. 1981. Revisio Boehmeriae Sinicae. Acta Botanica Yunnanica, 3(3): 307-328.
- Wang, W.C. and J.R. Cheng. 1995. *China Flora* (vol 23, Sect 2). Scienceence Press of China, Beijing 320-355.
- Weddell, H.A. 1869. Pilea., Pellionia. and glatostema. Prodru Systematicse NaturaRegni Vegeta, 16(1): 195-216.
- White, T.J., T. Bruns, S. Lee and J. Taylor. 1990. Americanplification and direct sequencing of fungal ribosomal RNA gens for phylogenetics. *Infect Genet. Evol.*, 3: 315-322.
- Yang, R.F. 2006. Statmaticsus and prospects of wild germplasm resources of Ramie. *Hunan Agric. Sci.*, 5: 45-47.
- Yang, R.F., Q.H. Guo, Y.C. Chen, L.H. Wang and H.L. Sun. 2000. Studies on the karyotype and giemsa C- banding Pattern of wild resources of *Boehmeria*. *China 's Fiber Crops*, 22(2): 6-11.
- Zeng, R.Q. and J.J. Hong. 2009. Research advance in biotechnology of ramie. Acta Agriculturae Universitatis Jiangxiensis, 21(8): 14-16.
- Zhang B., C.Q. Zheng, G.G. Zang, L.N. Zhao and H.L. Sun. 1998. Classification and Evolution of Groups on the *Boehmeria* in China. Acta Agronomica Sinica, 24(6): 775-781.

(Received for publication 17 May 2014)