PJB-2010-265
GENETIC ANALYSIS OF BASMATI AND NON-BASMATI PAKISTANI RICE (ORYZA SATIVA L.) CULTIVARS USING MICROSATELLITE MARKERS
MALIK ASHIQ RABBANI1*, MUHAMMAD SHAHID MASOOD1, ZABTA KHAN SHINWARI2 AND KAZUKO YAMAGUCHI-SHINOZAKI3
Abstract
Information of genetic variability and relatedness among rice genotypes is essential for future breeding programmes and derivation of superior cultivars. The objective of the present study was to evaluate the genetic relationship among traditional and improved cultivars of Pakistani rice and to determine differences in the patterns of variation between two indica rice groups: basmati and non-basmati. Forty-one cultivars were evaluated by means of 30 microsatellite markers distributed over the whole rice genome. A total of 104 alleles were detected by 30 markers, all of them (100%) were polymorphic. The number of alleles generated by each marker ranged from 2 to 6 with an average of 3.5 alleles marker-1. Polymorphism information content (PIC) varied from 0.259 to 0.782 with an average of 0.571. A significant positive correlation (r = 0.71**) was found between the number of alleles at SSR locus and the PIC values. Pair-wise Nei and Li’s similarity coefficients ranged from 0.10 to 0.99. A dendrogram based on cluster analysis by microsatellite polymorphism grouped 41 rice cultivars into 2 major groups effectively differentiating the late maturing, tall and slender-grain basmati and other aromatic rice cultivars from the early, short statured, short bold and long bold grain non-aromatic cultivars. Higher level of genetic diversity between basmati and non-basmati support the concept that former had a long history of independent evolution and diverged from non-basmati rice a long time ago through human selection and patronage. Present investigation further indicated that genetically basmati rice is different from that of coarse indica and japonica type. The results suggested that microsatellite markers could efficiently be utilized for diversity analysis, and differentiation of basmati and non-basmati rice cultivars. In addition, marker-based identification of traditional basmati rice may help in maintaining the integrity of this high quality product to the benefit of both farmers and consumers.
To Cite this article:
Download