PJB-2017-84
Significant differences in gene expression and key genetic components associated with high growth vigor in Populus section Tacamahaca as revealed by comparative transcriptome analysis
Shiping Cheng, Minghui Chen, Yanyan Li, Junqing Wang, Xuerong Sun and Jiansheng Wang
Abstract
To identify genetic components involved in high growth vigor in F1 Populus section Tacamahaca hybrid plants, high and low vigor plants showing significant differences in apical dominance during a rapid growth period were selected. Apical bud transcriptomes of high and low-growth-vigor hybrids and their parents were analyzed using high-throughput RNA sequencing on an Illumina HiSeq 2000 platform. A total of 5,542 genes were differently expressed between high growth vigor hybrid and its parents, the genes were significantly enriched in pathways related to processes such as photosynthesis, pyrimidine ribonucleotide biosynthetic processes and nucleoside metabolic processes. There were 1410 differentially expressed genes between high and low growth vigor hybrid, the genes were mainly involved in photosynthesis, chlorophyll biosynthetic process, carbon fixation in photosynthetic organisms, porphyrin and chlorophyll metabolism and nitrogen metabolism. Moreover, a k-core of a gene co-expression network analysis was performed to identify the potential functions of genes related to high growth vigor. The functions of 8 selected candidate genes were associated mainly with circadian rhythm, water transport, cellulose catabolic processes, sucrose biosynthesis, pyrimidine ribonucleotide biosynthesis, purine nucleotide biosynthesis, meristem maintenance, and carbohydrate metabolism. Our results may contribute to a better understanding of the molecular basis of high growth vigor in hybrids and its regulation
To Cite this article:
Download