PJB-2015-170
MOLECULAR CHARACTERIZATION AND DIVERSITY OF A NOVEL NON-AUTONOMOUS MUTATOR-LIKE TRANSPOSON FAMILY IN BRASSICA
FAISAL NOUROZ1,2, SHUMAILA NOREEN3 AND J.S. HESLOP-HARRISON2
Abstract
Transposable elements (TEs) are capable of mobilizing from one genomic location to other, with changes in their copy numbers. Mutator-like elements (MULEs) are DNA transposons characterized by 9 bp target site duplications (TSDs), with high variability in sequence and length, and include non-conserved terminal inverted repeats (TIRs). We identified and characterized a family of Mutator-like elements designated as Shahroz. The structural and molecular analyses revealed that family had a small number of mostly defective non-autonomous MULEs and has shown limited activity in the evolutionary history of the Brassica A-genome. The Shahroz elements range in size from 2734 to 3160 bp including 76 bp imperfect TIRs and 9 bp variable TSDs. The individual copies have shown high homology (52–99%) in their entire lengths. The study revealed that the elements are less in numbers but active in Brassica rapa genomes and PCR amplification revealed their specificity and amplification in A-genome containing diploid and polyploids Brassica. The phylogenetic analysis of Brassica MULEs with other plant Mutator elements revealed that no correlation exists between Brassica MULEs and other elements suggesting a separate line of evolution. Analyzing the regions flanking the insertions revealed that the insertions have showed a preference for AT rich regions. The detailed study of these insertions revealed that although less in number and small sizes, they have played a role in Brassica genome evolution by their mobilization.
To Cite this article:
Download